Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định

Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Chào mừng đến với Đề HSG cấp huyện môn Toán lớp 9 năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định. Đề thi này được thiết kế để kiểm tra và đánh giá năng lực của học sinh giỏi trong môn Toán. Trong đề thi này, các em sẽ đối diện với các bài toán thú vị và có tính logic cao. Ví dụ, một trong những câu hỏi đòi hỏi học sinh chứng minh rằng một số tự nhiên m,n thỏa mãn điều kiện nhất định. Bài toán khác yêu cầu học sinh tìm ra cách thực hiện một trò chơi cụ thể trên bảng số và đưa ra kết luận cuối cùng. Đề thi còn chứa các câu hỏi về hình học và đại số, giúp học sinh phát triển kỹ năng tư duy logic và kỹ năng giải quyết vấn đề. Việc giải các bài toán này không chỉ giúp học sinh rèn luyện khả năng toán học mà còn là cơ hội để họ phát triển tư duy sáng tạo và logic. Chúng tôi hy vọng rằng, qua việc tham gia vào Đề HSG cấp huyện lớp 9 môn Toán, các em sẽ có cơ hội thử thách bản thân, nâng cao kiến thức và kỹ năng toán học của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.