Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định

Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Chào mừng đến với Đề HSG cấp huyện môn Toán lớp 9 năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định. Đề thi này được thiết kế để kiểm tra và đánh giá năng lực của học sinh giỏi trong môn Toán. Trong đề thi này, các em sẽ đối diện với các bài toán thú vị và có tính logic cao. Ví dụ, một trong những câu hỏi đòi hỏi học sinh chứng minh rằng một số tự nhiên m,n thỏa mãn điều kiện nhất định. Bài toán khác yêu cầu học sinh tìm ra cách thực hiện một trò chơi cụ thể trên bảng số và đưa ra kết luận cuối cùng. Đề thi còn chứa các câu hỏi về hình học và đại số, giúp học sinh phát triển kỹ năng tư duy logic và kỹ năng giải quyết vấn đề. Việc giải các bài toán này không chỉ giúp học sinh rèn luyện khả năng toán học mà còn là cơ hội để họ phát triển tư duy sáng tạo và logic. Chúng tôi hy vọng rằng, qua việc tham gia vào Đề HSG cấp huyện lớp 9 môn Toán, các em sẽ có cơ hội thử thách bản thân, nâng cao kiến thức và kỹ năng toán học của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Thạch Thất - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Thạch Thất – Hà Nội : + Cho điểm M di động trên đoạn thẳng AB M AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD, BMEF và giao điểm hai đường chéo mỗi hình vuông lần lượt là O, O’. Gọi H là giao điểm của AE và BC. 1/ Chứng minh rằng: AE BC. 2/ Gọi I là giao của AC và BE. Chứng minh I là trung điểm của đoạn thẳng DF và ba điểm H, D, F thẳng hàng. 3/ Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB. + Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM2 = BM2 + CM2. Tính số đo góc BMC?
Đề chọn HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 03 trang, gồm 16 câu trắc nghiệm (08 điểm) + 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn Đề chọn HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho điểm A di chuyển trên đường tròn tâm O đường kính BC R 2 (A không trùng với B và C). Trên tia AB lấy điểm M sao cho B là trung điểm của AM. Gọi H là hình chiếu vuông góc của A lên BC và I là trung điểm của HC. Chứng minh: a) Tam giác AHM và tam giác CIA đồng dạng. b) MH vuông góc với AI. c) M chuyển động trên một đường tròn cố định. + Cho đường tròn O R đường kính AB. Đường thẳng d tiếp xúc với đường tròn tại A và M là điểm di động trên đường thẳng d M A. Đường thẳng qua O vuông góc với BM cắt đường thẳng d tại N. Giá trị nhỏ nhất của MN bằng? + Một đồng hồ có kim giờ dài 4cm và kim phút dài 6cm. Lúc 16 giờ đúng khoảng cách giữa hai đầu kim là?
Đề khảo sát HSG Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2023.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Tìm số nguyên n sao cho C = n2 – 3n + 4 là số chính phương. b) Cho các số nguyên a, b, c thỏa mãn a + b + c = 2023. Chứng minh rằng a3 + b3 + c3 – 1 chia hết cho 6. + Cho tam giác ABC vuông tại A, Gọi D, E lần lượt là trung điểm của BC, AC. Đường thẳng qua C vuông góc với BC cắt DE tại F, H là hình chiếu của C lên BF. a) Chứng minh FH.FB = FE.FD. b) Chứng minh tam giác ABH đồng dạng với tam giác ECH. c) Gọi I là trung điểm của FE. Chứng minh A, H, I thẳng hàng. + Cho các số dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = 2 25 2 9 a ab b a c.