Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THPT năm 2019 2020 sở GD ĐT Cần Thơ

Nội dung Đề thi chọn học sinh giỏi Toán THPT năm 2019 2020 sở GD ĐT Cần Thơ Bản PDF Chủ Nhật ngày 10 tháng 05 năm 2020, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi môn Toán GD THPT cấp thành phố năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ gồm có 02 trang với 09 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ : + Ban chấp hành Đoàn TNCS HCM của một trường THPT có 12 ủy viên là đoàn viên học sinh. Trong đó, khối 10 có 5 đoàn viên, khối 11 có 4 đoàn viên và khối 12 có 3 đoàn viên. Trong đợt phòng chống dịch bệnh Covid-19, để giúp người dân thực hiện việc khai báo y tế trên ứng dụng NCOVI, Bí thư Đoàn trường đã chọn ra 4 đoàn viên trong số này để đi làm nhiệm vụ. Tính xác suất sao cho 4 đoàn viên được chọn có đủ ba khối. [ads] + Một cửa hàng bán hàng trả góp cho khách hàng với điều kiện như sau: Không cần phải trả trước số tiền M là trị giá của món hàng khi mua hàng. Chỉ cần trả một số tiền cố định X mỗi tháng kể từ ngày mua với lãi suất cố định hàng tháng là r%. Thời hạn trả hết nợ là n tháng (do khách hàng chọn theo qui định của cửa hàng). Hãy lập công thức tính số tiền X mà khách hàng phải trả góp hàng tháng với các điều kiện nêu trên. + Ở vòng bán kết của một giải Tiger cup có sự góp mặt của 4 đội Việt Nam, Xingapo, Thái Lan và Inđônêxia. Trước khi các trận đấu của vòng này diễn ra các bạn Hưng, Huy và Hoàng dự đoán như sau: Hưng: Xingapo hạng nhì, Thái Lan hạng ba. Huy: Việt Nam hạng nhì, Thái Lan hạng tư. Hoàng: Xingapo hạng nhất, Inđônêxia hạng nhì. Biết rằng, dự đoán của mỗi bạn đều có một dự đoán đúng và một dự đoán sai. Bằng lập luận dựa theo các dữ kiện đã cho, hãy xác định kết quả xếp hạng đúng cho mỗi đội.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho tam giác ABC có AB < AC và đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Phân giác trong của góc BAC cắt các đường thẳng DE, DF lần lượt tại X, Y. Gọi S, T là các điểm nằm trên cạnh BC sao cho XSY = XTY = 90°. 1. Chứng minh rằng BX, CY là các tiếp tuyến của đường tròn đường kính XY. 2. Chứng minh rằng đường tròn ngoại tiếp tam giác AST tiếp xúc với đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC. + Xét các số a, b, c nguyên, c >= 0 thỏa mãn an + 2n là ước của bn + c với mọi n nguyên dương. 1. Chứng minh rằng c = 0 hoặc c = 1. 2. Khi c = 1, chứng minh rằng a và b không đồng thời là các số chính phương. + Với mỗi số tự nhiên n >= 4, ký hiệu an là số nhỏ nhất các tập con có 3 phần tử của tập hợp Sn = {1; 2; 3; …; n} sao cho với mọi tập con có 4 phần tử của Sn luôn chứa ít nhất một trong các tập con có 3 phần tử này. 1. Xác định a6. 2. Chứng minh rằng với mọi số tự nhiên n >= 4 thì an >= 1/4.nC3.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán bậc THPT cấp tỉnh và chọn đội tuyển thi học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào buổi sáng và buổi chiều ngày 21 tháng 08 năm 2022. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Chọn ngẫu nhiên ba số đội một khác nhau từ tập hợp A = {1;2;3;…;19;20}. Tính xác suất để trong ba số được chọn không có hai số tự nhiên liên tiếp. + Người ta cắt từ hình vuông 5×5 ô ra được 6 chữ L như hình vẽ. Hỏi ô trống còn lại có thể ở những vị trí nào? + Cho hình thang ABCD không cân, có hai đáy là AB, CD và AB < CD; E là giao điểm của hai đường chéo AC và BD. Đường trung trực của CD cắt AB tại F. Gọi O1 là tâm đường tròn ngoại tiếp tam giác ADF và O2 là tâm đường tròn ngoại tiếp tam giác BCF. M là giao điểm thứ hai của (O1) và CD, N là giao điểm thứ hai của (O2) và CD. a) Chứng minh ABMN là hình thang cân. b) Chứng minh O1O2 vuông góc với EF.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Thừa Thiên Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế.
Đề thi học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT TP Hồ Chí Minh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT TP Hồ Chí Minh : + Cho các hàm số có đồ thị lần lượt là (C1), (C2), (C3). Đường thẳng x = 1 cắt (C1), (C2), (C3) lần lượt tại các điểm M, N, P. Biết phưong trình tiếp tuyến của (C1) tại M và của (C2) tại N lần lượt là y = 2x + 3 và y = 202(10x + 1). Viết phương trình tiếp tuyến của (C3) tại P. + Cho tứ diện ABCD có AB = a; AC = a√7; DAB = DBC = 90°, ABC = 120°; góc giữa hai mặt phẳng (BCD) và (ABD) bằng 30°. a) Tính theo a thể tích của tứ diện ABCD. b) Tính theo a bán kính mặt cầu ngoại tiếp tứ diện ABCD. + Xét tập hợp X chọn ngẫu nhiên các số a b c X để được hàm số bậc ba y. Tính xác suất để hàm số này đạt cực trị tại x = 1.