Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán lần 1 năm 2023 2024 trường THPT Gia Bình 1 Bắc Ninh

Nội dung Đề khảo sát lớp 10 môn Toán lần 1 năm 2023 2024 trường THPT Gia Bình 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng môn Toán lớp 10 lần 1 năm học 2023 – 2024 trường THPT Gia Bình số 1, tỉnh Bắc Ninh; đề thi gồm 04 trang, hình thức 50% trắc nghiệm + 50% tự luận, trong đó phần trắc nghiệm gồm 20 câu, phần tự luận gồm 04 câu, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán lớp 10 lần 1 năm 2023 – 2024 trường THPT Gia Bình 1 – Bắc Ninh : + Xét hệ tọa độ Oth trên mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét). Một quả bóng được đá lên từ điểm A(0;0;2) và chuyển động theo quỹ đạo là một cung parabol có bề lõm quay xuống dưới. Quả bóng đạt độ cao 8,5m sau 1 giây và đạt độ cao 6m sau 2 giây. Hỏi bắt đầu từ giây thứ mấy sau đây thì quả bóng chạm đất? + Nhân dịp sắp đến Tết Giáp Thìn 2024, tổ Toán Tin trường THPT Gia Bình số 1 dự định gói bánh chưng và bánh tét (loại bánh chưng dài). Tổ dự kiến sử dụng tối đa 20 kg gạo nếp, 2kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh tét. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh tét cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg gạo xanh. Số bánh chưng và bánh tét gói được sẽ chia về các gia đình thầy cô với giá mỗi cái bánh chưng là 30 nghìn đồng và mỗi cái bánh tét là 40 nghìn đồng. Tính số lượng bánh mỗi loại cần gói để tổ Toán Tin thu được nhiều tiền nhất. A. 30 cái bánh chưng và 10 cái bánh tét. B. 40 cái bánh chưng và 0 cái bánh tét. C. 35 cái bánh tét và 0 cái bánh chưng. D. 35 cái bánh chưng và 5 cái bánh tét. + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lượt vào kinh doanh xe Honda Vison với chi phí mua vào 1 chiếc là 27 triệu đồng và bán ra là 31 triệu đồng. Với giá này thì số lượng xe mà khách hàng sẽ mua trong 1 năm là 600 chiếc. Nhằm mục đích đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc thì số lượng xe bán ra trong 1 năm sẽ tăng thêm 200 chiếc. Giả sử giảm giá x (triệu đồng) một cái so với giá bán 31 triệu đồng. Hãy tìm hàm số bậc hai biểu thị lợi nhuận doanh nghiệp thu được trong một năm? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.
Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.