Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Khê Hà Tĩnh

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Khê Hà Tĩnh Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Hương Khê - Hà Tĩnh Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Hương Khê - Hà Tĩnh Sytu xin giới thiệu tới quý thầy cô và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: 1. Ông Bảo đã thu lãi 400 triệu đồng khi mua đất đầu tư. Khi mua, giá mỗi m2 đất là 1 triệu đồng, còn khi bán là 5 lần giá mua. Hỏi diện tích đất ông Bảo đã đầu tư? 2. Cô Hân nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. Biết 60% số gia cầm là vịt. Hỏi có bao nhiêu con gà mái? 3. Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh tam giác AEB đồng dạng với tam giác AFC. Chứng minh DEC đồng dạng với AEF. Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI. Đây là một bài thi thách thức và khích lệ học sinh lớp 8 vận dụng kiến thức Toán để giải quyết các bài toán phức tạp. Chúc các em học sinh làm bài tốt và đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG cấp huyện môn Toán năm 2012 - 2013 từ phòng GD&ĐT Việt Yên, Bắc Giang. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi từ đề thi: 1. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD^2 = 1/AM^2 + 1/AN^2. 4. Tìm đa thức f(x) biết rằng: f(x) chia cho x - 2 dư 10, f(x) chia cho x - 2 dư 24, f(x) chia cho x^2 - 4 được thương là -5x và còn dư. 5. Phân tích đa thức x^4 + 2013x^2 + 2012x + 2013 thành nhân tử.