Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Khê Hà Tĩnh

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hương Khê Hà Tĩnh Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Hương Khê - Hà Tĩnh Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Hương Khê - Hà Tĩnh Sytu xin giới thiệu tới quý thầy cô và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: 1. Ông Bảo đã thu lãi 400 triệu đồng khi mua đất đầu tư. Khi mua, giá mỗi m2 đất là 1 triệu đồng, còn khi bán là 5 lần giá mua. Hỏi diện tích đất ông Bảo đã đầu tư? 2. Cô Hân nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. Biết 60% số gia cầm là vịt. Hỏi có bao nhiêu con gà mái? 3. Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh tam giác AEB đồng dạng với tam giác AFC. Chứng minh DEC đồng dạng với AEF. Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI. Đây là một bài thi thách thức và khích lệ học sinh lớp 8 vận dụng kiến thức Toán để giải quyết các bài toán phức tạp. Chúc các em học sinh làm bài tốt và đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm định HSG Toán 8 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2023. Trích dẫn Đề kiểm định HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho a2(b + c) = b2(c + a) = 2023 với a, b, c đôi một khác nhau và khác không. Tính giá trị của biểu thức P = c2(a + b). + Cho p là số nguyên tố thỏa mãn (p + 1)/2 và (p2 + 1)/2 đều là số chính phương. Chứng minh p2 − 1 chia hết cho 48. + Hình bình hành ABCD có O là giao điểm của hai đường chéo. Kẻ CP vuông góc với đường thẳng AB tại P, CQ vuông góc với đường thẳng AD tại Q. 1. Chứng minh CP.AB = CQ.AD và CPQ đồng dạng với BCA. 2. Gọi M, N lần lượt là trung điểm của OB và OA. Lấy điểm F trên cạnh AB sao cho tia FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. 3. Xác định vị trí điểm F để tổng BE + AK có giá trị nhỏ nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Hải Hòa - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Hải Hòa – Nam Định : + Cho biểu thức. a) Nêu ĐKXĐ và Rút gọn biểu thức A. b) Tính giá trị của biểu thức A biết x thoã mãn: x2 + x = 2. c) Tìm các giá trị x > 0 để biểu thức 6 B A nhận giá trị nguyên. + Cho tam giác ABC nhọn. Các đường cao AE BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM a cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh: NC ND và HI HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. + Cho hai số dương x y thỏa mãn: 2 2 2 4 4 12 9 1 y x xx y. Hãy tìm giá trị nhỏ nhất của biểu thức: Q xy y x 323.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Xác định đa thức P(x), biết P(x) chia cho đa thức x + 1 dư 4, P(x) chia cho đa thức x + 2 dư 6, P(x) chia cho đa thức x2 + 3x + 2 được thương là x + 3 và còn dư. Cho ba số dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức: M = 1/a + 1/4b + 1/16c. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên tia HC lấy điểm M sao cho HM = AH. Vẽ hình bình hành AHMN, MN cắt AC tại E. Vẽ hình bình hành BAED. Chứng minh: a. AB = AE b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. + Cho tam giác ABC có góc ABC = 120°, các đường phân giác BD, AE, CF. a. Chứng minh rằng: 1/BD = 1/BA + 1/BC. b. Tính góc EDF.
Đề học sinh giỏi lần 2 Toán 8 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 8 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Cho tam giác ABC có ba góc nhọn (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BFC đồng dạng BDA và BFD = ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với HM, đường thẳng này cắt các đường thẳng AB, AD, AC lần lượt tại P, Q, R. Chứng minh: PQ = QR. + Hai địa điểm A và B cách nhau 200 km. Cùng một lúc một xe ô tô khởi hành từ A và một xe máy khởi hành từ B đi ngược chiều nhau. Xe ô tô và xe máy gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau xe máy một giờ thì sẽ gặp nhau tại điểm D cách C một khoảng là bao nhiêu km? Biết rằng vận tốc của xe ô tô lớn hơn vận tốc của xe máy là 20 km/h. + Cho tứ giác ABCD có các điểm M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi I là điểm nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết SAMIQ = 32 (cm2), SBMIN = 50 (cm2) và SDPIQ = 20 (cm2).