Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 8 môn Toán năm 2022 2023 sở GD ĐT Nam Định

Nội dung Đề thi chọn học sinh giỏi lớp 8 môn Toán năm 2022 2023 sở GD ĐT Nam Định Bản PDF Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán cấp tỉnh của năm học 2022-2023 do Sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức. Kỳ thi này sẽ diễn ra vào thứ Sáu, ngày 10 tháng 03 năm 2023, và đề thi sẽ có đáp án, lời giải chi tiết cũng như thang điểm.

Một số câu hỏi trong đề thi bao gồm:
- Tính số đo của góc FMN trong tam giác ABC khi các đường cao AD, BM, CN của tam giác cắt nhau tại điểm H, và điểm E là điểm đối xứng của H qua O.
- Chứng minh rằng ba điểm KLR là thẳng hàng trong tam giác ABC với điểm G là trung điểm của IQ.
- Giải bài toán liên quan đến việc rút thẻ từ một hộp có 99 thẻ màu vàng, 100 thẻ màu đỏ và 101 thẻ màu xanh, hỏi sau mỗi lần rút thẻ và thay thế, người ta có thể nhận được tất cả các thẻ cùng màu hay không.
- Tìm đa thức f(x) và tính giá trị của f(2023) và tìm giá trị của số tự nhiên n để biểu thức 64/3^n + 2^n/n^2 là một số chính phương.

Đề thi chọn học sinh giỏi Toán lớp 8 năm 2022-2023 của Sở GD&ĐT Nam Định sẽ đánh giá kỹ năng Toán học và logic của các em học sinh, và hy vọng rằng các em sẽ đạt kết quả tốt trong kỳ thi này. Hy vọng rằng thông tin trên sẽ giúp quý thầy cô và các em học sinh chuẩn bị tốt cho đề thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có lời giải
Tài liệu gồm 354 trang, tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có đáp án và lời giải chi tiết, giúp học sinh lớp 8 ôn tập để chuẩn bị cho kỳ thi chọn HSG Toán 8 cấp trường, cấp quận / huyện, cấp tỉnh / thành phố.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hương Khê - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hương Khê – Hà Tĩnh : + Ông Bảo đã thu lãi 400 triệu đồng (chưa trừ tiền thuế), khi mua đất đầu tư. Khi ông mua, mỗi m2 đất có giá 1 triệu đồng, nhưng khi bán, có giá gấp 5 lần. Hỏi miếng đất ông Bảo đầu tư, có diện tích bằng bao nhiêu m2? + Cô Hân có nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. 60% số gia cầm này là vịt. Vậy có bao nhiêu con gà mái? + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC b) Chứng minh DEC AEF c) Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hà Đông – Hà Nội : + Cho các số dương a, b, c thỏa mãn a + b + c = 2022. Tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC vuông tại A (AC > AB). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thắng song song với AH, cắt đường thẳng AC tại P. 1) Chứng minh AKC đồng dạng BPC. 2) Gọi Q là trung điểm của BP. Chứng minh BP ВС. 3) Tia AQ cắt BC tại I. Chứng minh: HB АН ВС IB. + Có 5 điểm nằm trong một hình vuông cạnh a = 36,7 (đơn vị dài). Chứng minh rằng tồn tại một điểm nằm trong hình vuông mà khoảng cách từ điểm đó đến 5 điểm nói trên đều lớn hơn 10.
Đề kiểm định chất lượng Toán 8 năm 2021 - 2022 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề kiểm định chất lượng Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghi Lộc – Nghệ An : + Chứng minh rằng với mọi n thuộc số tự nhiên thì biểu thức M chia hết cho 21. + Tìm số tự nhiên gồm 4 chữ số thỏa mãn đồng thời hai tính chất: a) Khi chia số đó cho 100 ta được số dư là 6 b) Khi chia số đó cho 51 ta được số dư là 17. + Chứng minh rằng với mọi a thuộc Z thì N là một số chính phương.