Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng yếu tố Z+ trong việc giải phương trình hàm trên R+ - Lê Phúc Lữ

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Lê Phúc Lữ (giảng viên trường Đại học Khoa Học Tự Nhiên thành phố Hồ Chí Minh), hướng dẫn sử dụng yếu tố Z+ trong việc giải phương trình hàm trên R+. TÓM TẮT NỘI DUNG: Trong bài viết nhỏ này, tác giả muốn nhắc lại một số tình huống có thể dùng các tính toán trên tập số nguyên dương để hỗ trợ cho việc giải phương trình hàm trên tập hợp số thực dương. Cụ thể hơn là về: việc dùng chu kỳ tuần hoàn, phương trình hàm cộng tính và các đánh giá bất đẳng thức khác. 1) Giới thiệu: Phương trình hàm trên R+ là một lớp hàm đặc thù và đòi hỏi các kỹ thuật biến đổi, đánh giá ở mức độ nhất định. Hiện tại các đề bài thi trong và ngoài nước có khai thác các dạng này khá nhiều, có các bài toán khó, thử thách. Trong bài viết này, ta sẽ xét một số cách tiếp cận có liên quan đến yếu tố số nguyên dương như sau: – Phương trình hàm cộng tính f(x) + f(y) = f(x + y) trên R+ thì có thể giải được ra nghiệm f(x) = ax vì lý do trên R+ thì hàm cộng tính cũng sẽ đồng biến. Tuy nhiên, nếu như ta không có điều kiện mạnh như cộng tính mà chỉ có điều kiện yếu hơn là f(nx) = nf(x) với x thuộc R+ và n thuộc Z+ thì sao? Câu trả lời là vẫn sẽ giải được, nhưng cần kết hợp với tính đồng biến. Điều này sẽ được mô tả rõ hơn thông qua các ví dụ bên dưới. – Các phương trình hàm có dùng đến kỹ thuật chu kỳ tuần hoàn để chứng minh hàm hằng hoặc tính đơn ánh thì việc xuất hiện của các yếu tố nguyên dương của chu kỳ là tất yếu. Đôi khi ta cần khai thác điều đó khéo léo thì mới xử lý triệt để được bài toán. – Ngoài ra, yếu tố nguyên dương cũng xuất hiện khá bất ngờ và lại có thể dùng trong các bài toán đánh giá các bất đẳng thức trung gian để giải phương trình hàm rất hiệu quả. Với tâm lý cho rằng việc chỉ chứng minh được f(n) = n với n thuộc Z+ thì khó có thể đi đến f(x) = x với x thuộc R+ có khi lại làm mất đi cơ hội giải quyết được bài toán. 2) Sử dụng tính chất tuần hoàn. 3) Khai thác tính đơn điệu. 4) Các dạng khác. 5) Bài tập tự luyện.

Nguồn: toanmath.com

Đọc Sách

10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 12 - Lê Hoành Phò
Giống như cuốn sách 10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 10 của cùng tác giả Lê Hoành Phò, cuốn sách này cũng bao gồm 21 chuyên đề với nội dung là tóm tắt kiến thức trọng tâm của Toán phổ thông và Toán chuyên, phần các bài Toán chọn lọc có khoảng 900 bài với nhiều dạng loại và mức độ từ cơ bản đến phức tạp, bài tập tự luyện khoảng 250 bài, có hướng dẫn và đáp số. Cuốn sách 10 trọng điểm bồi dưỡng học sinh giỏi (HSG) môn Toán 12 – Lê Hoành Phò có 3 chuyên đề nâng cao: Đa thức, Phương trình nghiệm nguyên và Toán suy luận. Nội dung cụ thủ như sau: + Chuyên đề 1. Tính đơn điệu và cực trị + Chuyên đề 2. Khảo sát và vẽ đồ thị hàm số + Chuyên đề 3. Bài toán liên quan đồ thị + Chuyên đề 4. Hàm số mũ và logarit + Chuyên đề 5. Phương trình mũ và logarit + Chuyên đề 6.Bất đẳng thức và giá trị lớn nhất, nhỏ nhất + Chuyên đề 7. Nguyên hàm hàm hữu tỉ, hàm lượng giác + Chuyên đề 8. Nguyên hàm hàm vô tỉ, hàm lượng giác [ads] + Chuyên đề 9. Ứng dụng tích phân + Chuyên đề 10. Số phức và ứng dụng + Chuyên đề 11. Phép biến hình không gian + Chuyên đề 12. Khối đa diện và lăng trụ + Chuyên đề 13. Khối tứ diện và khối chóp + Chuyên đề 14. Khối tròn xoay + Chuyên đề 15. Tọa độ không gian + Chuyên đề 16. Phương trình đường và mặt + Chuyên đề 17. Lý thuyết số + Chuyên đề 18. Phương trình hàm + Chuyên đề 19. Nghiệm của đa thức + Chuyên đề 20. Tổ hợp và rời rạc + Chuyên đề 21.Dãy số Hy vọng cuốn sách sẽ là cẩm nang giúp các em ôn luyện thật tốt cho kỳ thi học sinh giỏi Toán 12 sắp tới. Chúc các em đạt giải cao!
10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 11 - Lê Hoành Phò
Cuốn sách gồm 537 trang, được biên soạn bởi thầy giáo Lê Hoành Phò, tuyển chọn 10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 11. Chuyên đề 1. Hàm số lượng giác. Chuyên đề 2. Phương trình lượng giác. Chuyên đề 3. Bất phương trình và hệ phương trình lượng giác. Chuyên đề 4. Tổ hợp và xác suất. Chuyên đề 5. Các đại lượng tổ hợp và nhị thức Newton. Chuyên đề 6. Cấp số và tổng. Chuyên đề 7. Dãy số. Chuyên đề 8. Giới hạn dãy số. Chuyên đề 9. Giới hạn hàm số và liên tục. Chuyên đề 10. Đạo hàm và vi phân. [ads] Chuyên đề 11. Định lí Lagrange và tính đơn điệu, cực trị, lồi lõm. Chuyên đề 12. Ứng dụng đạo hàm. Chuyên đề 13. Phép biến hình và dời hình. Chuyên đề 14. Phép đồng dạng và phép nghịch đảo. Chuyên đề 15. Quan hệ song song. Chuyên đề 16. Vectơ trong không gian. Chuyên đề 17. Quan hệ vuông góc. Chuyên đề 18. Thể tích khối đa diện và khối cầu.
10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 10 - Lê Hoành Phò
Cuốn sách 10 trọng điểm bồi dưỡng học sinh giỏi môn Toán 10 của nhà giáo ưu tú – Th.S Lê Hoành Phò có 21 chuyên đề với nội dung là tóm tắt kiến thức trọng tâm của Toán phổ thông và Toán chuyên, phần các bài Toán chọn lọc có khoảng 900 bài với nhiều dạng loại và mức độ từ cơ bản đến phức tạp, bài tập tự luyện khoảng 250 bài, có hướng dẫn và đáp số. Cuốn sách có 3 chuyên đề nâng cao: Đa thức, Phương trình nghiệm nguyên và Toán suy luận. Nội dung cụ thủ như sau: + Chuyên đề 1. Phản chứng và quy nạp + Chuyên đề 2. Ánh xạ và hàm số + Chuyên đề 3. Tập hợp và phép đếm + Chuyên đề 4. Phương trình + Chuyên đề 5. Hệ phương trình [ads] + Chuyên đề 6. Bất phương trình + Chuyên đề 7. Vector + Chuyên đề 8. Tích vô hướng + Chuyên đề 9. Hệ thức lượng + Chuyên đề 10. Tam giác và đường tròn + Chuyên đề 11. Cực trị hình học + Chuyên đề 12. Phép biến hình + Chuyên đề 13. Tọa độ phẳng + Chuyên đề 14. Đường tròn và Conic + Chuyên đề 15. Lượng giác và ứng dụng + Chuyên đề 16. Bất đẳng thức cơ bản + Chuyên đề 17. Bất đẳng thức mở rộng + Chuyên đề 18. Giá trị lớn nhất, nhỏ nhất + Chuyên đề 19. Đa thức + Chuyên đề 20. Phương trình nghiệm nguyên + Chuyên đề 31. Toán suy luận Hy vọng cuốn sách sẽ là cẩm nang giúp các em ôn luyện thật tốt cho kỳ thi học sinh giỏi Toán 10 sắp tới. Chúc các em đạt giải cao!