Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tốt nghiệp THPT 2021 lần 3 trường chuyên Quốc học Huế

Ngày … tháng 05 năm 2021, trường THPT chuyên Quốc học – Huế, thành phố Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ ba. Đề thi thử Toán tốt nghiệp THPT 2021 lần 3 trường chuyên Quốc học Huế mã đề 142 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 142. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2021 lần 3 trường chuyên Quốc học Huế : + Cho 100 10 G 10. Đặt 10 log logx x G y G khi đó logy G có thể biểu diễn dưới dạng m n trong đó m n là các số nguyên dương và ước chung lớn nhất của chúng bằng 1. Các chữ số của số m n có tổng bằng? + Chu kì bán rã của Cacbon 14 C là khoảng 5730 năm. Một vật có khối lượng Cacbon 14 C ban đầu là m0 thì sau một khoảng thời gian t năm, khối lượng Cacbon 14 C còn lại của vật đó là 0 1 5730 2 t m t m. Các nhà khảo cổ tìm được một mẫu xương bò và xác định nó đã mất 50,5% lượng Cacbon 14 C ban đầu của nó. Mẫu xương bò đó có tuổi là bao nhiêu năm? (kết quả làm tròn đến hàng đơn vị). A. 5814 năm. B. 5812 năm. C. 5813 năm. D. 5811 năm. + Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A và AB a, cạnh bên SA vuông góc với mặt phẳng đáy và SA a. Gọi D E F lần lượt là điểm đối xứng của A qua C, của S qua B và của A qua mặt phẳng SBC. Thể tích của khối tứ diện ADEF bằng?

Nguồn: toanmath.com

Đọc Sách

25 đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT Lâm Đồng
Bộ đề thi thử môn Toán 2017 của sở GD&ĐT tỉnh Lâm Đồng gồm 114 trang với 25 đề thi, mỗi đề thi có 50 câu hỏi trắc nghiệm theo cấu trúc chuẩn của Bộ GD & ĐT.
13 đề thi thử THPT Quốc gia 2017 môn Toán chọn lọc kèm lời giải chi tiết - Vũ Ngọc Huyền
Tài liệu tuyển chọn 13 đề thi thử THPT Quốc gia 2017 môn Toán chọn lọc kèm lời giải chi tiết. Phần cuối tài liệu là các phụ: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số và ứng dụng trong thực tiễn, một số vấn đề chọn lọc Nguyên Hàm – Tích Phân, Một số bài tập hạn chế MTCT chọn lọc.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nam Yên Thành - Nghệ An lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nam Yên Thành – Nghệ An lần 1 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số câu trong đề thi: 1. Biết rằng khi đỗ vào trường đại học X, mỗi sinh viên phải đóng một khoản ban đầu là 10 triệu đồng. Ông A dự kiến cho con thi và vào học tại trường này, để có số tiền đó, gia đình đã tiết kiệm và hàng tháng gửi ngân hàng với số tiền không đổi, với lãi suất 0,7%/tháng theo thể thức lãi kép. Hỏi để được số tiền trên thì gia đình phải gửi tiết kiệm mỗi tháng là bao nhiêu để sau 12 tháng gia đình đủ tiền đóng cho con ăn học? (làm tròn tới hàng ngìn). 2. Gia đình em dự kiến xây một cái bể nước dạng hình hộp chữ nhật, với kích thước chiều cao, rộng và dài trong lòng bể lần lượt là 2 mét, 2 mét, 3 mét. Em hãy giúp Bố tính số gạch cần mua để xây thành bên của cái bể, biết rằng viên gạch có chiều rộng, chiều dài và chiều cao lần lượt là 10 (cm), 20(cm), 5(cm).(Bỏ qua lượng vữa xây)? 3. Một chất điểm chuyển động có vận tốc tính theo công thức v(t) = 2t + 1 (t là thời gian tính theo giây). Tính quãng đường đi được trong khoảng thời gian từ giây thứ 5 đến giây thứ 10 (quãng đường tính theo mét).
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Thái Bình lần 3
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Thái Bình lần 3 gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số câu trong đề thi: 1. Một bể nước có dung tích 1000 lít. Người ta mở vòi cho nước chảy vào bể, ban đầu bể cạn nước. Trong giờ đầu vận tốc nước chảy vào bể là 1 lít/1 phút. Trong các giờ tiếp theo vận tốc nước chảy giờ sau gấp đôi giờ liền trước. Hỏi sau khoảng thời gian bao lâu thì bể đầy nước (kết quả gần đúng nhất). 2. Xét một hộp bóng bàn có dạng hình hộp chữ nhật. Biết rằng hộp chứa vừa khít ba quả bóng bàn được xếp theo chiều dọc, các quả bóng bàn có kích thước như nhau. Phần không gian còn trống trong hộp chiếm? 3. Bạn A có một đoạn dây dài 20m. Bạn chia đoạn dây thành hai phần. Phần đầu uốn thành một tam giác đều. Phần còn lại uốn thành một hình vuông. Hỏi độ dài phần đầu bằng bao nhiêu để tổng diện tích hai hình trên là nhỏ nhất.