Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 năm 2023 - 2024 phòng GDĐT Phan Rang - Tháp Chàm - Ninh Thuận

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Phan Rang – Tháp Chàm, tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024. Trích dẫn Đề HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT Phan Rang – Tháp Chàm – Ninh Thuận : + Tìm các cặp số nguyên dương (x;y) thỏa mãn: 5xy + 3x + y = 9. + Chuẩn bị đón xuân Giáp Thìn 2024, những nghệ sĩ ở thành phố Phan Rang – Tháp Chàm trang trí một hình lục giác đều bằng cách nối hai đỉnh lục giác với nhau bởi một đoạn thẳng và tô đoạn thẳng đó bởi một trong hai màu xanh hoặc đỏ. Biết rằng ba đỉnh nào của lục giác cũng được nối với nhau tạo thành một tam giác, chứng minh rằng bao giờ cũng tồn tại một tam giác có ba cạnh cùng màu. + Cho đường tròn (O) tâm O và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O), (A là tiếp điểm). Vẽ đường kính AB của đường tròn (O), gọi C là giao điểm MB với đường tròn (O). Đường thẳng qua C vuông góc với AM cắt MA, MO lần lượt tại D, E. a) Chứng minh CB.CM = AD.AM. b) Chứng minh E là trung điểm của CD. c) Gọi I là giao điểm của AC và BD. Chứng minh ba điểm M, E, I thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2015 - 2016 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2015 – 2016 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2016; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2015 – 2016 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x m xm 2 (m là tham số, x là ẩn). 1. Chứng minh với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt 1 2 x x 2. Tìm tất cả các giá trị của tham số m sao cho: 1 2 1 2 2 1 1 2 2 1 2 1 55 x x. + Cho các số thực không âm x, y, z đôi một khác nhau đồng thời thoả mãn zxzy 1. Chứng minh rằng: 222 111 4 xy zx zy. + Từ điểm M nằm ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB và cát tuyến MNP với đường tròn (A, B là các tiếp điểm, N nằm giữa M và P). Gọi H là giao điểm của AB và MO. 1. Chứng minh: Tứ giác NHOP nội tiếp được đường tròn. 2. Kẻ dây cung PQ vuông góc với đường thẳng MO. Chứng minh ba điểm N, H, Q thẳng hàng. 3. Gọi E là giao điểm của MO và cung nhỏ AB của đường tròn (O). Chứng minh: NE là tia phân giác của MNH.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 06/03/2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 - 2015 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 – 2015 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 05/04/2015, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2014 - 2015 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2014 – 2015 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 04 tháng 03 năm 2015; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2014 – 2015 sở GD&ĐT Ninh Bình : + Cho 3 số thực không âm x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức A = 2 2 2 22 2 232 232 32 x xy y y yz z z zx x. + Cho đường tròn tâm O, dây cung BC cố định. Điểm A trên cung nhỏ BC, A không trùng với B, C và điểm chính giữa của cung nhỏ BC. Gọi H là hình chiếu của A trên đoạn thẳng BC; E, F thứ tự là hình chiếu của B và C trên đường kính AA’. Chứng minh rằng: a) Hai tam giác HEF và ABC đồng dạng với nhau. b) Hai đường thẳng HE và AC vuông góc với nhau. c) Tâm đường tròn ngoại tiếp tam giác HEF là điểm cố định khi A chuyển động trên cung nhỏ BC. + Cho tam giác ABC vuông cân đỉnh A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.