Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập hàm số và đồ thị Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 118 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề hàm số và đồ thị trong chương trình môn Toán 8 bộ sách Chân Trời Sáng Tạo, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 5 HÀM SỐ VÀ ĐỒ THỊ 2. Bài 1 KHÁI NIỆM HÀM SỐ 2. A. Trọng tâm kiến thức 2. 1 Khái niệm hàm số 2. 2 Giá trị của hàm số 2. B. Các dạng bài tập 2. + Dạng 1 Hàm số, bảng giá trị của hàm số 2. + Dạng 2 Tính giá trị của hàm số khi biết giá trị của biến số, và ngược lại 4. + Dạng 3 Vận dụng 6. C. Bài tập vận dụng 8. Bài 2 KHÁI NIỆM HÀM SỐ VÀ ĐỒ THỊ CỦA HÀM SỐ 14. A. Trọng tâm kiến thức 14. 1 Tọa độ của một điểm 14. 2 Xác định một điểm trên mặt phẳng tọa độ khi biết tọa độ của nó 14. 3 Đồ thị của hàm số 15. B. Các dạng bài tập 15. + Dạng 1 Đọc, biểu diễn toạ độ điểm trên mặt phẳng toạ độ 15. + Dạng 2 Vẽ đồ thị hàm số cho bởi bảng giá trị 17. + Dạng 3 Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ 20. + Dạng 4 Điểm thuộc đồ thị, điểm không thuộc đồ thị của hàm số 22. C. Bài tập vận dụng 23. Bài 3 HÀM SỐ BẬC NHẤT y = ax + b (a khác 0) 37. A. Trọng tâm kiến thức 37. 1 Hàm số bậc nhất, bảng giá trị 37. 2 Đồ thị của hàm số bậc nhất 37. B. Các dạng bài tập 37. + Dạng 1 Hàm số bậc nhất, giá trị của hàm số bậc nhất 37. + Dạng 2 Vẽ đồ thị hàm số bậc nhất 39. + Dạng 3 Điểm thuộc đường thẳng Điểm không thuộc đường thẳng 45. + Dạng 4 Xác định đường thẳng 46. + Dạng 5 Vận dụng 47. C. Bài tập vận dụng 49. Bài 4 HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG 60. A. Trọng tâm kiến thức 60. 1 Hệ số góc của đường thẳng 60. 2 Đường thẳng song song và đường thẳng cắt nhau 60. B. Các dạng bài tập 60. + Dạng 1 Nhận diện hệ số góc Xác định đường thẳng biết hệ số góc 60. + Dạng 2 Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng. vuông góc với nhau 62. + Dạng 3 Bài toán tham số liên quan đến hệ số góc của đường thẳng 64. + Dạng 4 Xác định đường thẳng với quan hệ song song 65. + Dạng 5 Xác định đường thẳng với quan hệ vuông góc 66. C. Bài tập vận dụng 68. LUYỆN TẬP CHUNG 77. A. Hàm số bậc nhất 77. B. Tìm hệ số góc của đường thẳng 82. C. Xác định vị trí tương đối giữa hai đường thẳng 83. D. Tìm m để đồ thị hàm số thoả mãn điều kiện về vị trí tương đối 90. ÔN TẬP CHƯƠNG V 102. A. Bài tập trắc nghiệm 102. B. Bài tập tự luận 108.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 4: Bất phương trình bậc nhất một ẩn. I. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG 1. Nhắc lại về thứ tự trên tập số. 2. Bất đẳng thức. 3. Liên hệ giữa thứ tự và phép cộng. II. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN 1. Liên hệ giữa thứ tự và phép nhân với số lượng. 2. Liên hệ giữa thứ tự và phép nhân số âm. 3. Tính chất bắc cầu của thứ tự.
Chuyên đề giải toán bằng cách lập phương trình
Tài liệu gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề giải toán bằng cách lập phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Bước 1: Lập phương trình: + Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. II. BÀI TẬP MINH HỌA Phương pháp chung: + Bước 1: Kẻ bảng nếu được, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. + Bước 2: Giải thích từng ô trong bảng, lập luận để thiết lập phương trình bậc hai. + Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: + Dạng 1: Toán chuyển động. + Dạng 2: Toán năng suất. + Dạng 3: Toán làm chung công việc. + Dạng 4: Toán có nội dung hình học. + Dạng 5: Dạng toán có chứa tham số. + Dạng 6: Toán về tỉ lệ chia phần. + Dạng 7: Dạng toán liên quan đến số học. + Dạng 8: Dạng toán có nội dung vật lý, hóa học.
Chuyên đề phương trình chứa ẩn ở mẫu
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình chứa ẩn ở mẫu, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ + Bước 1: Tìm điều kiện xác định (viết tắt là ĐKXĐ) của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). + Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được. + Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. II. BÀI TẬP MINH HỌA Vận dụng phương pháp giải phưng trình chứa ẩn ở mẫu, đưa về phương trình bậc nhất đã biết.
Chuyên đề phương trình tích
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình tích, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Phương trình tích (một ẩn) là phương trình có dạng A(x).B(x)…. = 0. Trong đó A(x) và B(x) là các đa thức. Để giải phương trình này ta chỉ cần giải từng phương trình A(x) = 0, B(x) = 0 … rồi lấy tất cả các nghiệm của chúng. Các phương pháp phân tích đa thức thành nhân tử có vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Cách đặt ẩn phụ cũng hay được sử dụng để trình bày cho lời giải gọn gàng hơn. II. BÀI TẬP Vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích đưa phương trình đã cho về các phương trình bậc nhất đã biết cách giải.