Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển lớp 8 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội

Nội dung Đề chọn đội tuyển lớp 8 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển lớp 8 môn Toán năm 2022 - 2023 hệ thống GD Archimedes School Hà Nội Đề chọn đội tuyển lớp 8 môn Toán năm 2022 - 2023 hệ thống GD Archimedes School Hà Nội Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 tại trường Archimedes School, thành phố Hà Nội. Đề thi gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài thi là 135 phút. Dưới đây là một số câu hỏi trong đề chọn đội tuyển Toán lớp 8 năm 2022 - 2023 hệ thống GD Archimedes School - Hà Nội: Cho các số nguyên dương a, b, c, d thỏa mãn điều kiện ab = cd. Chứng minh rằng (a + c)2 + (b + d)2 không thể là tích của ba số nguyên tố phân biệt. Cho tam giác ABC cân tại A, có BC < BA. Gọi H là giao điểm của các đường cao BE và CF của tam giác ABC. a) Chứng minh tứ giác BFEC là hình thang cân. b) Chứng minh OI = OK, MN vuông góc với HK. Trên bàn có 269 thẻ bài màu đỏ, 269 thẻ bài màu xanh và 269 thẻ bài màu tím. Thầy Cẩn thực hiện phép chọn ba thẻ bài cùng màu rồi thêm vào bàn một thẻ bài khác màu. Hỏi khi trên bàn mỗi màu không quá hai thẻ bài, có bao nhiêu thẻ bài mỗi màu? Mong rằng đề thi sẽ giúp các em học sinh lớp 8 rèn luyện kỹ năng và kiến thức Toán, từ đó chinh phục thành công các thử thách trí tuệ. Chúc quý thầy cô và các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Thanh Hóa : + Giả sử đa thức f x chia cho x 1 dư 4; chia cho 2 x 1 dư 2 3 x. Hãy tìm dư trong phép chia f x cho 2. + Cho O là trung điểm của đoạn thẳng AB. Vẽ tia Ax By cùng phía đối với AB và vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh OAC đồng dạng với DBO và 2 AB AC BD. b) Kẻ OM vuông góc CD tại M. Tia BM cắt tia Ax tại I. Chứng minh AC CM CI 2) Cho ABC (AB AC) trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB AC lần lượt ở D và E. Chứng minh rằng 3 AB AC AD AE. + Một hộp đựng 20 quả bóng trong đó có 4 quả màu xanh, 5 quả màu trắng và 6 quả màu vàng (các quả còn lại khác màu nhau). Lấy ngẫu nhiên từ hộp ra 2 quả, tính xác suất để lấy được 2 quả cùng màu?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Châu Đức - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Châu Đức, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Châu Đức – BR VT : + Viết phương trình đường thẳng (d): y = ax + b (a khác 0). Biết (d) song song với đường thẳng y = 2x và (d) cắt trục hoành tại điểm có hoành độ bằng 3. + Cho hình thang ABCD (AB // CD; AB < CD). Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, AC, CD, DB. 1) Chứng minh tứ giác EFGH là hình bình hành. 2) Tìm điều kiện của hình thang ABCD để tứ giác EFGH là hình thoi. 3) Gọi O là giao điểm của AC và BD (với O nằm trong tứ giác EFGH). Chứng minh: S_OEH + S_OFG = 1/2.S_EFGH. + Cho hình bình hành ABCD. Từ một điểm G trên đường chéo AC kẻ đường thẳng bất kì cắt cạnh AB tại điểm E và cắt cạnh AD tại điểm F. Chứng minh rằng: AB AD AC AE AF AG.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Yên Thế – Bắc Giang : + Một tổ sản xuất dự kiến mỗi ngày sản xuất được 45 sản phẩm. Thực tế mỗi ngày tổ sản xuất thêm được 15 sản phẩm so với kế hoạch nên đã hoàn thành sớm dự kiến 2 ngày và vượt được 100 sản phẩm. Tính tổng số sản phẩm tổ dự kiến sản xuất? + Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm, hai đường chéo AC, BD cắt nhau tại O. Qua điểm D kẻ đường thẳng d vuông góc với DB, d cắt tia BC tại E. Kẻ CH vuông góc với DE (H thuộc DE). a) Chứng minh DC2 = CH.DB. b) Tính độ dài CH và chứng minh: CD là tia phân giác của ACH. c) Gọi K, F lần lượt là giao điểm của EO với CH và CD. Chứng minh: EK.FO = EO.FK. + Cho hình thang vuông có một góc 45°, các cạnh đáy có độ dài lần lượt là 8cm và 12cm, diện tích của hình thang đó là?