Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp thế

Nội dung Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp thế Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9: Giải hệ phương trình bằng phương pháp thếTóm tắt lý thuyếtBài tập và dạng toán Tài liệu học Toán lớp 9: Giải hệ phương trình bằng phương pháp thế Tài liệu này bao gồm 19 trang chi tiết về kiến thức cần nhớ và các dạng toán liên quan đến việc giải hệ phương trình bằng phương pháp thế trong chương trình môn Toán lớp 9. Mỗi bài toán đều đi kèm đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về phương pháp này. Tóm tắt lý thuyết Quy tắc thế trong giải hệ phương trình là quá trình biểu diễn một ẩn theo ẩn khác và thế vào phương trình khác để giảm số lượng ẩn. Nếu phương trình là ax + b = 0, ta xác định nghiệm dựa vào a và b. Bài tập và dạng toán Trên tài liệu có cung cấp các dạng toán phổ biến liên quan đến giải hệ phương trình bằng phương pháp thế. Ví dụ về cách giải hệ phương trình bậc nhất hai ẩn, biến đổi về hệ phương trình quy về bậc nhất, giải bằng phương pháp đặt ẩn phụ và tìm điều kiện tham số. Học sinh sẽ được hướng dẫn cụ thể và rõ ràng về cách giải từng dạng toán, giúp họ nắm vững kiến thức và nâng cao kỹ năng giải toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 21 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và góc trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải tam giác vuông. Cách giải: Để giải tam giác vuông ta dùng hệ thức giữa cạnh và các góc trong tam giác vuông. – Chú ý: Các bài toán về giải tam giác vuông bao gồm: + Giải tam giác vuông khi biết độ dài 1 cạnh và số đo 1 góc nhọn. + Giải tam giác vuông khi biết độ dài 2 cạnh. Dạng 2 : Tính cạnh và góc của tam giác. Cách giải: Làm xuất hiện tam giác vuông để áp dụng các hệ thức trên bằng cách kẻ thêm đường cao. Dạng 3 : Toán ứng dụng thực tế. Cách giải: Dùng hệ thức giữa cạnh và góc trong tam giác vuông để giải quyết tình huống trong thực tế. Dạng 4 : Toán tổng hợp. Cách giải: Vận dụng linh hoạt một số hệ thức giữa cạnh và góc trong một tam giác vuông để giải toán. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.