Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chuyên đề Toán 10 lần 3 năm 2022 - 2023 trường THPT Trần Phú - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chuyên đề môn Toán 10 lần 3 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài: 90 phút (không kể thời gian phát đề). Trích dẫn Đề thi chuyên đề Toán 10 lần 3 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người cần phải chèo thuyền từ vị trí A đến vị trí C trên bờ BD, sau chạy bộ từ C đến B. Biết rằng vận tốc chèo thuyền bằng 6km h vận tốc chạy bộ là 8km h khoảng cách từ vị trí A đến bờ BD bằng 3km, khoảng cách hai vị trí B D bằng 8km. Tính khoảng cách lớn nhất giữa hai vị trí B C biết rằng tổng thời gian người đó chèo thuyền và chạy bộ là 1 giờ 20 phút. + LeBron James là một cầu thủ bóng rổ chuyên nghiệp Mỹ và hiện tại đang chơi cho CLB bóng rổ Cleveland Cavaliers của Hiệp hội Bóng rổ Quốc gia (NBA). Trong một cuộc thi bóng rổ để ném bóng vào rổ qua đối thủ, LeBron James đã ném bóng thành công với số liệu đo được như hình vẽ (OA OB m BC m A m OE m 4 5 175 D 3 3). Tính độ cao lớn nhất của bóng so với mặt đất trong khi bóng bay tới rổ biết rằng quỹ đạo bay của bóng là một đường cong parabol.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL đội tuyển HSG Toán 10 năm 2020 - 2021 trường Liễn Sơn - Vĩnh Phúc
Đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2020 – 2021 trường THPT Liễn Sơn, tỉnh Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL đội tuyển HSG Toán 10 năm 2020 – 2021 trường Liễn Sơn – Vĩnh Phúc : + Cho tam giác đều ABC. Điểm M thay đổi nằm trong đoạn AB (M khác A và B). Gọi H, K tương ứng là hình chiếu vuông góc của M trên các đoạn BC và AC; G là trọng tâm của tam giác MHK. Chứng minh rằng đường thẳng MG luôn đi qua một điểm cố định. + Cho phương trình. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm thực. + Tìm tất cả các giá trị của tham số m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn.
Đề KSCL HSG lần 2 Toán 10 năm 2023 - 2024 trường THPT Lê Xoay - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng học sinh giỏi lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT Lê Xoay, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 147 – 260 – 347 – 442 – 575 – 696. Trích dẫn Đề KSCL HSG lần 2 Toán 10 năm 2023 – 2024 trường THPT Lê Xoay – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a b là? + Trong kỳ thi tốt nghiệp phổ thông, ở một trường kết quả số thí sinh đạt danh hiệu xuất sắc như sau: Về môn Toán: 48 thí sinh; Về môn Vật lý: 37 thí sinh; Về môn Văn: 42 thí sinh; Về môn Toán hoặc môn Vật lý: 75 thí sinh; Về môn Toán hoặc môn Văn: 76 thí sinh; Về môn Vật lý hoặc môn Văn: 66 thí sinh; Về cả 3 môn: 4 thí sinh. Hỏi có bao nhiêu học sinh nhận được danh hiệu xuất sắc ít nhất một môn? + Trong mặt phẳng tọa độ Oxy cho điểm A(2;1). Lấy điểm B nằm trên trục hoành có hoành độ không âm và điểm C trên trục tung có tung độ dương sao cho tam giác ABC vuông tại A. Tìm toạ độ B C để tam giác ABC có diện tích lớn nhất.
Đề KSCL lần 1 năm học 2017 - 2018 môn Toán 10 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
Đề KSCL lần 1 năm học 2017 – 2018 môn Toán 10 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Lớp 10A có 16 học sinh giỏi môn Toán, 15 học sinh giỏi môn Lý và 11 học sinh giỏi môn Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lý, 6 học sinh vừa giỏi Lý và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó chỉ có 11 học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp giỏi cả ba môn Toán, Lý, Hóa A. 4 B. 7 C. 8 D. 5 [ads] + Cho hàm số y = f(x) có tập xác định là [-3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số đồng biến trên khoảng (-3; 3) B. Hàm số đồng biến trên khoảng (-3; -1) và (1; 3) C. Hàm số đồng biến trên khoảng (-3; -1) và (1; 4) D. Hàm số nghịch biến trên khoảng (-1; 0) + Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai? A. ABC là tam giác đều ⇔ Tam giác ABC cân và có một góc 60 độ B. ABC là tam giác đều ⇔ Tam giác ABC có hai góc bằng 60 độ C. ABC là tam giác đều ⇔ Tam giác ABC cân D. ABC là tam giác đều ⇔ ABC là tam giác có ba cạnh bằng nhau
Đề KSCL lần 1 năm học 2017 - 2018 môn Toán 10 trường THPT Phạm Công Bình - Vĩnh Phúc
Đề KSCL lần 1 năm học 2017 – 2018 môn Toán 10 trường THPT Phạm Công Bình – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 20 câu hỏi trắc nghiệm và 4 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Khẳng định nào sau đây đúng? A. Hai vectơ không bằng nhau thì có độ dài không bằng nhau B. Hiệu của 2 vectơ có độ dài bằng nhau là vectơ 0 C. Tổng của hai vectơ khác vectơ 0 là 1 vectơ khác vectơ 0 D. Hai vectơ cùng phương với 1 vectơ khác vectơ 0 thì 2 vectơ đó cùng phương với nhau [ads] + Cho tam giác ABC có G là trọng tâm, I là trung điểm của cạnh AB, M thuộc cạnh AB sao cho vtMA + 3.vtMB = 0 a. Chứng minh vtMC + 2.vtMI = 3.vtMG b. Giả sử điểm N thỏa mãn vtAN = x.vtAC. Tìm x để ba điểm M, N, G thẳng hàng + Cho số gần đúng a = 2841275 với độ chính xác d = 300. Hãy viết số quy tròn a. A. 2842000 B. 2841200 C. 2841300 D. 2841000