Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội Đề khảo sát Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9, một đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm học 2022 – 2023 sẽ được tổ chức tại trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội vào ngày 24 tháng 02 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề khảo sát: 1) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm một công việc thì sau 7 giờ 12 phút hoàn thành xong công việc. Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì họ làm được 3/4 công việc. Hỏi mỗi người làm một mình thì bao lâu xong công việc? 2) Cho hệ phương trình. Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x và y là hai số đối nhau. 3) Cho đường thẳng d và đường tròn (O;R) không có điểm chung. Kẻ OH vuông góc d tại H. Điểm A thuộc d và không trùng với điểm H. Qua A kẻ hai tiếp tuyến AB, AC tới (O) (B và C là các tiếp điểm). BC cắt OA, OH lần lượt tại M và N. Đoạn thẳng OA cắt (O) tại I. Chứng minh các tính chất của hình trên. Đây là những câu hỏi mang tính thách thức và yêu cầu sự tư duy logic, khả năng giải quyết vấn đề của các em học sinh lớp 9. Chúng tôi hy vọng rằng đề khảo sát sẽ giúp các em rèn luyện kỹ năng Toán một cách hiệu quả và đạt kết quả tốt trong học tập. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2019 - 2020 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 10 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, học sinh có 120 phút để làm bài thi, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Hà Đông – Hà Nội : + Khi uống trà sữa, người ta thường dùng ống hút bằng nhựa hình trụ có đường kính đáy 0,9cm, độ dài trục 21cm. Hỏi khi thải ra ngoài môi trường, diện tích nhựa gây ô nhiễm môi trường do 1000 ống hút gây ra là bao nhiêu? [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người mua một cái bàn là và một cái quạt điện với tổng số tiền theo giá niêm yết là 850 nghìn đồng. Khi trả tiền người đó được khuyến mại giảm 20% đối với giá tiền bàn là và 10% đối với giá tiền quạt điện so với giá niêm yết. Vì vậy, người đó phải trả tổng cộng 740 nghìn đồng. Tính giá tiền của cái bàn là và cái quạt điện theo giá niêm yết. + Cho phương trình x^4 – 2mx^2 + m^2 – 4 = 0. a) Giải phương trình với m = 3. b) Tìm m để phương trình có 3 nghiệm phân biệt.
Đề khảo sát chất lượng Toán 9 năm 2019 - 2020 phòng GDĐT Sơn Tây - Hà Nội
Thứ Ba ngày 09 tháng 06 năm 2020, phòng Giáo dục và Đào tạo UBND thị xã Sơn Tây, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh lớp 9 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Sơn Tây – Hà Nội gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Sơn Tây – Hà Nội : + Một hộp sữa hình trụ có đường kính đáy là 12cm, chiều cao là 10 cm. Tính diện tích vật liệu để tạo nên một vỏ hộp như vậy (không tính phần mép nổi). [ads] + Cho đường tròn (O; R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C, đoạn thẳng AC cắt (O) tại K khác A. Hai dây MN và BK cắt nhau tại E. a) Chứng minh tứ giác AHEK nội tiếp. b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: HB.AK = HE.KB. c) Chứng minh tam giác NFK là tam giác cân. d) Giả sử KE = KC. Chứng minh OK // MN và KM^2 + KN^2 = 4R^2. + Cho các số a, b, c thỏa mãn a^2 + b^2 + c^2 = 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a + b + c – abc.
Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 phòng GDĐT Thanh Trì - Hà Nội
Ngày 28 tháng 05 năm 2020, phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 9 năm học 2019 – 2020 lần thi thứ nhất. Đề khảo sát Toán 9 lần 1 năm 2019 – 2020 phòng GD&ĐT Thanh Trì – Hà Nội gồm có 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 phòng GD&ĐT Thanh Trì – Hà Nội : + Một người mua hai mặt hàng A và B. Nếu tăng giá mặt hàng A thêm 10% và mặt hàng B thêm 20% thì người đó phải trả 232 nghìn đồng. Nếu giảm giá mỗi mặt hàng 10% thì người đó phải trả 180 nghìn đồng. Hỏi giá của mỗi mặt hàng lúc đầu? [ads] + Nhà bạn Minh có một chiếc thang dài 4m. Cần đặt chân thang cách chân tường một khoảng cách bằng bao nhiêu để nó tạo với mặt đất mộc góc an toàn là 65° ( tức là đảm bảo thang không bị đổ khi sử dụng) (kết quả lấy đến hai chữ số thập phân). + Cho hàm số y = ax + b. a) Xác định các hệ số a và b biết đồ thị của nó song song với đường thẳng y = ax và đi qua điểm A(3;4). b) Vẽ đồ thị hàm số vừa tìm được.
Đề khảo sát Toán 9 năm 2019 - 2020 phòng GDĐT Thanh Xuân - Hà Nội
Thứ Bảy ngày 30 tháng 05 năm 2020, phòng Giáo dục và Đào tạo quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra khảo sát học sinh lớp 9 môn Toán giai đoạn học kỳ 2 năm học 2019 – 2020. Đề khảo sát Toán 9 năm 2019 – 2020 phòng GD&ĐT Thanh Xuân – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có 01 trang. Trích dẫn đề khảo sát Toán 9 năm 2019 – 2020 phòng GD&ĐT Thanh Xuân – Hà Nội : + Vào thời điểm các tia nắng mặt trời tạo với mặt đất một góc 60°, bóng của một cái tháp trên mặt đất dài 20m (hình vẽ bên). Tính chiều cao của tháp (kết quả làm tròn đến chữ số thập phân thứ hai. [ads] + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = mx + 2. a) Tìm m để đường thẳng (d) đi qua điểm A(2;3). b) Tìm tất cả giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ (x1;y1) và (x2;y2) thỏa mãn y1 + y2 = 5. + Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm trên đoạn OA (C khác A; C khác O). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, vẽ các tia tiếp tuyến Ax và By với nửa đường tròn. M là điểm nằm trên nửa đường tròn (M khác A; M khác B). Đường thẳng qua M vuông góc với MC cắt các tia Ax, By lần lượt tại P và Q. 1. Chứng minh tứ giác APMC nội tiếp. 2. Chứng minh hai tam giác MAB và CPQ đồng dạng. 3. Gọi D là giao điểm của CP và AM; E là giao điểm của CQ và BM. Chứng minh OM đi qua trung điểm của DE.