Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Bỉnh Khiêm Đắk Lắk

Nội dung Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Bỉnh Khiêm Đắk Lắk Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra đánh giá chất lượng cuối học kì 2 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Nguyễn Bỉnh Khiêm, tỉnh Đắk Lắk; đề thi có đáp án trắc nghiệm mã đề 173 174 175 176. NHẬN BIẾT: 1 Nhận biết tập xác định của hàm số. 2 Tính giá trị của hàm số tại 1 điểm. 3 Tìm điểm thuộc đồ thị hàm số. 4 Nhận biết được hàm số bậc hai. 5 Nhận biết đỉnh của đồ thị hàm số bậc hai. 6 Nhận biết định lí về dấu của tam thức bậc hai. 7 Nhận biết được nghiệm của bất phương trình bậc hai. 8 Nhận biết được nghiệm của phương trình quy về bậc hai. 9 Nhận biết tọa độ vectơ chỉ phương của đường thẳng. 10 Nhận biết tọa độ vectơ pháp tuyến của đường thẳng. 11 Nhận dạng PTTS của đường thẳng khi biết đường thẳng đó đi qua 1 điểm và nhận 1 vectơ chỉ phương. 12 Nhận dạng PTTQ của đường thẳng khi biết đường thẳng đó đi qua 1 điểm và nhận 1 vectơ pháp tuyến. 13 Nhận biết vị trí tương đối giữa hai đường thẳng. 14 Nhận biết phương trình đường tròn. 15 Nhận biết định nghĩa Elip, Hyperbol, Parabol. 16 Nhận biết định nghĩa Elip, Hyperbol, Parabol. 17 Nhận biết được phương trình chính tắc của elip. 18 Nhận biết được phương trình chính tắc của hyperbol. 19 Nhận biết được phương trình chính tắc của parabol. 20 Quy tắc cộng, Quy tắc nhân. 21 Hoán vị của n phần tử. 22 Công thức số chỉnh hợp chập k của n phần tử. 23 Công thức số tổ hợp chập k của n phần tử. 24 Chỉnh hợp. 25 Tổ hợp. 26 Dạng khai triển nhị thức Niutơn. 27 Không gian mẫu. 28 Số phần tử của không gian mẫu. 29 Biến cố liên quan phép thử T. 30 Biến cố đối. THÔNG HIỂU: 31 Tìm được tập nghiệm của một bất phương trình bậc hai. 32 Giải phương trình quy về phương trình bậc hai. 33 Lập phương trình tổng quát của đường thẳng. 34 Tính khoảng cách từ 1 điểm đến một đường thẳng. 35 Xác định tâm và bán kính đường tròn. 36 Xác định tiêu điểm, tiêu cự khi biết PTCT của elip. 37 Xác định tiêu điểm, tiêu cự khi biết PTCT của Hyperbol. 38 Xác định tiêu điểm, tham số tiêu, phương trình đường chuẩn khi biết PTCT của Parabol. 39 Hoán vị, chỉnh hợp, tổ hợp. 40 Nhị thức Niu tơn – Tìm hệ số của n x. VẬN DỤNG: 41 Viết phương trình đường thẳng. 42 Viết phương trình đường tròn. 43 Viết phương trình chính tắc của Elip. 44 Viết phương trình chính tắc của Hyperbol. 45 Viết phương trình chính tắc của Parabol. 46 Hoán vị, chỉnh hợp, tổ hợp. 47 Tính xác suất của biến cố. VẬN DỤNG CAO: 48 Bài toán vận dụng dấu tam thức bậc hai bậc hai có chứa tham số. 49 Bài toán vận dụng kiến thức phương trình đường thẳng, phương trình đường tròn, 3 đường cônic. 50 Bài toán tổng hợp vận dụng kiến thức Hoán vị, chỉnh hợp, tổ hợp, xác suất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường chuyên Trần Đại Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa – TP HCM : + Một cái bàn có mặt bàn là hình elip, biểu diễn trong mặt phẳng toạ độ Oxy có phương trình (E). Một tấm khăn hình chữ nhật ABCD được phủ lên mặt bàn (A, B, C, D thuộc elip (E), các cạnh của hình chữ nhật ABCD đối xứng nhau qua hai trục của elip (E)). Biết chiều dài hình chữ nhật song song trục lớn và bằng nửa độ dài trục lớn của elip. Tính diện tích phần mặt bàn không bị phủ bởi tấm khăn biết rằng nếu elip có phương trình (a > b > 0) thì diện tích elip là piab. + Cho tam giác nhọn ABC với trực tâm H. Cho W là một điểm tùy ý trên cạnh BC, khác với các điểm B và C. Các điểm M và N tương ứng là chân các đường cao hạ từ B và C. Kí hiệu w1 là đường tròn ngoại tiếp tam giác BWN, và gọi X là điểm trên w1 sao cho WX là đường kính của w1. Tương tự, kí hiệu w2 là đường tròn ngoại tiếp tam giác CWM, và gọi Y là điểm trên w2 sao cho WY là đường kính của w2. Chứng minh rằng các điểm X, Y và H thẳng hàng. + Trong mặt phẳng toạ độ Oxy, tính tiêu cự của elip có phương trình x2 + 4y2 = 1.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(−1; 3), B(5; −5) và đường thẳng d : 2x + 3y − 1 = 0. a. Viết phương trình tham số và phương trình tổng quát của đường thẳng AB. b. Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng d. c. Viết phương trình đường tròn (C) đi qua các điểm A, B và có tâm thuộc đường thẳng d. + Trên đường tròn lượng giác, điểm M thỏa mãn (Ox;OM) = 700◦ thì nằm ở góc phần tư thứ? + Gọi ∆ là đường thẳng đi qua điểm M(−1; 3) và nhận −→u = (3; 1) làm vectơ chỉ phương. Trong các phương trình sau, phương trình tham số của đường thẳng ∆ là?
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Ngô Gia Tự - Đắk Lắk
Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 182 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 06 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 182, 183, 215, 216. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong các phương trình sau, có một phương trình là phương trình chính tắc của một elip. Hãy cho biết đó là phương trình nào? + Trong mặt phẳng toạ độ Oxy, cho hai điểm A(-2;6), B(1;2) và đường tròn (T) có phương trình (x – 3)^2 + (y + 1)^2 = 5. a) Viết phương trình đường tròn (C) có tâm A và đi qua B. b) Gọi d là tiếp tuyến của đường tròn (T) tại điểm M (4;-3) thuộc (T). Viết phương trình tổng quát của d. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình (x – 1)^2 + y^2 = 2 và đường thẳng ∆: x – y + m = 0. Tìm m để trên ∆ có duy nhất một điểm M mà từ đó có thể kẻ được hai tiếp tuyến MA, MB tới (C) (với A, B là các tiếp điểm) sao cho tam giác MAB đều.
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Gia Định - TP HCM
Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho đường tròn (C): x^2 + y^2 – 4x + 6y + 3 = 0. a) Tìm tọa độ tâm và tính bán kính của đường tròn (C). b) Viết phương trình tiếp tuyến (d) với đường tròn (C), biết tiếp tuyến (d) song song với đường thẳng delta: 3x – y + 1 = 0. Tìm tọa độ tiếp điểm. [ads] + Trong mặt phẳng với hệ trục toạ độ Oxy, cho (E): 16x^2 + 25y^2 = 400. Tìm tọa độ các tiêu điểm F1 và F2; đỉnh, tính tiêu cự; độ dài các trục của (E). + Cho cosa = 4/5 với 0 độ < a < 90 độ và cosb = -12/13. Tính các giá trị: sina; tana; cot a và tính giá trị biểu thức: A = cos(a + b).cos(a – b).