Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề ôn thi THPT Quốc gia môn Toán năm 2020 có đáp án

giới thiệu đến quý thầy, cô giáo và các em học sinh bộ đề ôn thi THPT Quốc gia môn Toán năm 2020 có đáp án; tài liệu gồm có 85 trang bao gồm 12 đề thi thử THPT Quốc gia 2020 môn Toán; các đề được biên soạn theo hình thức và cấu trúc tương tự và bám sát với đề thi THPTQG môn Toán chính thức những năm gần đây. Trích dẫn tài liệu bộ đề ôn thi THPT Quốc gia môn Toán năm 2020 có đáp án: + Một biển quảng cáo có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Biết chi phí để sơn phần tô đậm là 200.000 đồng/m2 và phần còn lại là 100.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 6m và tứ giác MNP Q là hình chữ nhật có MQ = 3m? + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1 m và 1,2 m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? [ads] + Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + (z + √2)2 = 3. Có tất cả bao nhiêu điểm A(a; b; c) (a, b, c là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau? + Chọn ngẫu nhiên hai số khác nhau từ 27 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng? + Cho đường thẳng y = 3x và parabol y = 2x^2 + a (a là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì a thuộc khoảng nào dưới đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán 2018 cụm 5 trường THPT chuyên khu vực đồng bằng sông Hồng
Đề thi thử Toán 2018 cụm 5 trường THPT chuyên khu vực đồng bằng sông Hồng mã đề 001 gồm 8 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi thử Toán có lời giải chi tiết . Trích dẫn đề thi thử Toán 2018 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây sai? A. Đường thẳng IO song song với mặt phẳng (SAD). B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác. C. Đường thẳng IO song song với mặt phẳng (SAB). D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO. [ads] + Trước kỳ thi học kỳ 2 của lớp 11 tại trường FIVE, giáo viên Toán lớp FIVE A giao cho học sinh đề cương ôn tập gồm có 2n bài toán, n là số nguyên dương lớn hơn 1. Đề thi học kỳ của lớp FIVE A sẽ gồm 3 bài toán được chọn ngẫu nhiên trong số 2n bài toán đó. Một học sinh muốn không phải thi lại, sẽ phải làm được ít nhất 2 trong số 3 bài toán đó. Học sinh TWO chỉ giải chính xác được đúng 1 nửa số bài trong đề cương trước khi đi thi, nửa còn lại học sinh đó không thể giải được. Tính xác suất để TWO không phải thi lại. + Cho hàm số y = (x – 1)/(x + 2), gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m – 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1; y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2; y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S.
Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Ngoại Ngữ - Hà Nội
Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Ngoại Ngữ – Hà Nội mã đề 209 được biên soạn theo chuẩn đề tham khảo môn Toán 2018 do Bộ Giáo dục và Đào tạo ban hành từ tháng 1 năm 2018, đề gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào sáng ngày 31/03/2018. Trích dẫn đề thi thử Toán 2018 trường chuyên Ngoại Ngữ – Hà Nội : + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng b (a khác b). Phát biểu nào dưới đây là sai? A. Đoạn thẳng MN là đường vuông góc chung của AB và SC (M và N lần lượt là trung điểm của AB và SC). B. Góc giữa các cạnh bên và mặt đáy bằng nhau. C. Hình chiếu của S lên mặt phẳng (ABC) là trọng tâm của tam giác ABC. D. SA vuông góc với BC. [ads] + Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8π cm. Bốn điểm A, B, C, D thay đổi sao cho các điểm A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tìm thể tích lớn nhất của tứ diện ABCD. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 2)^2 = 9 và hai điểm M(4;-4;2) và N(6;0;6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E.
Đề thi thử Toán THPT Quốc gia 2018 sở GD và ĐT Bắc Giang
Đề thi thử Toán THPT Quốc gia 2018 sở GD và ĐT Bắc Giang mã đề 121 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 30/03/2018, đề thi thử Toán có đáp án . Trích dẫn đề thi thử Toán sở Bắc Giang : + Một lô hàng gồm 30 sản phẩm, trong đó có 20 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm trong lô hàng. Tính xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt. + Cho hàm số y = x(x^2 – 3) có đồ thị (C). Có bao nhiêu điểm M thuộc đồ thị (C) thỏa mãn tiếp tuyến của (C) tại M cắt (C) và trục hoành lần lượt tại hai điểm A (khác M) và điểm B sao cho M là trung điểm của đoạn thẳng AB. + Một người vay ngân hàng 500 triệu đồng với lãi suất 1,2% mỗi tháng để mua xe ô tô. Nếu mỗi tháng người đó trả ngân hàng 10 triệu đồng và thời điểm bắt đầu trả cách thời điểm vay đúng 1 tháng. Hỏi sau bao nhiêu tháng thì người đó trả hết nợ ngân hàng. Biết răng lãi suát không thay đổi.
Đề thi thử môn Toán THPT Quốc gia 2018 trường THPT chuyên Hà Tĩnh lần 1
Đề thi thử môn Toán THPT Quốc gia 2018 trường THPT chuyên Hà Tĩnh lần 1 mã đề 209 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 30/03/2018, đề thi thử có đáp án . Trích dẫn đề thi thử môn Toán 2018 THPT chuyên Hà Tĩnh lần 1 : + Trong một lớp có n học sinh gồm ba bạn Chuyên, Hà, Tĩnh cùng n – 3 học sinh khác. Khi xếp tùy ý các học sinh này vào dãy ghế được đánh số từ 1 đến n mỗi học sinh ngồi 1 ghế thì xác suất để số ghế của Hà bằng trung bình cộng số ghế của Chuyên và số ghế của Tĩnh là 13/675. Khi đó n thỏa mãn. [ads] + Cho hình lập phương ABCD.A’B’C’D’ có O và O’ lần lượt là tâm của hình vuông ABCD và A’B’C’D’. Gọi V1 là thể tích khối nón tròn xoay có đỉnh là trung điểm của OO’ và đáy là đường tròn ngoại tiếp hình vuông A’B’C’D’; V2 là thể tích khối trụ tròn xoay có hai đáy là hai đường tròn nội tiếp hình vuông ABCD và A’B’C’D’. Tỉ số thể tích V1/V2 là? + Cho 4 số thực a, b, c, d là 4 số hạng liên tiếp của một cấp số cộng. Biết tổng của chúng bằng 4 và tổng các bình phương của chúng bằng 24. Tính P = a^3 + b^3 + c^3 + d^3.