Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh tổ chức. Kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và thang điểm. Bản đề HSG cấp huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh gồm các phần sau: Cho đa thức \(2f(x) = ax^2 + bx + c\) với \(a\), \(b\), \(c\) là các số hữu tỉ. Biết rằng \(f(0)\), \(f(1)\), \(f(2)\) có giá trị nguyên. Chứng minh rằng \(2a + b\) có giá trị nguyên. Cho \(a\), \(b\) là hai số nguyên phân biệt lớn hơn 1 thỏa mãn \(2a^2b\) là lũy thừa của một số nguyên tố khác 13 và \(2b^2a\) chia hết cho \(2a^2b\). Chứng minh \(2^3a\) là số chính phương. Cho tam giác ABC có \(B = 2C\); trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) Tam giác ABM là tam giác cân và ABC = 2AKC b) \(MA \cdot KN = MN \cdot KA\) c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp. File WORD (dành cho quý thầy, cô) chứa toàn bộ nội dung của đề thi. Hãy chuẩn bị kỹ lưỡng và tự tin đối mặt với thách thức để chinh phục bài thi HSG cấp huyện môn Toán lớp 8!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. a. Chứng minh: KF // EH. b. Chứng minh: các đường thẳng EK, HF, BD đồng quy. c. Chứng minh: SMKAE = SMHCF. + Cho biểu thức: A. a. Rút gọn A. b. Tìm giá trị nguyên của x để A có giá trị nguyên. + Chứng minh rằng: n3 + 2012n chia hết cho 48 với mọi n chẵn.
Đề thi HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Hoài Nhơn - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định, kỳ thi được diễn ra ngày 23 tháng 04 năm 2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có A > B. Trên cạnh BC lấy điểm H sao cho HAC = ABC. Đường phân giác của góc BAH cắt BH ở E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. Chứng minh rằng: CF // AE. + Chứng minh rằng: Chữ số tận cùng của hai số tự nhiên n và n5 là như nhau. + Tìm tất cả các số nguyên x thỏa mãn: x2 + x – p = 0; với p là số nguyên tố.
Đề thi HSG Toán 8 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.