Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh tổ chức. Kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và thang điểm. Bản đề HSG cấp huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh gồm các phần sau: Cho đa thức \(2f(x) = ax^2 + bx + c\) với \(a\), \(b\), \(c\) là các số hữu tỉ. Biết rằng \(f(0)\), \(f(1)\), \(f(2)\) có giá trị nguyên. Chứng minh rằng \(2a + b\) có giá trị nguyên. Cho \(a\), \(b\) là hai số nguyên phân biệt lớn hơn 1 thỏa mãn \(2a^2b\) là lũy thừa của một số nguyên tố khác 13 và \(2b^2a\) chia hết cho \(2a^2b\). Chứng minh \(2^3a\) là số chính phương. Cho tam giác ABC có \(B = 2C\); trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) Tam giác ABM là tam giác cân và ABC = 2AKC b) \(MA \cdot KN = MN \cdot KA\) c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp. File WORD (dành cho quý thầy, cô) chứa toàn bộ nội dung của đề thi. Hãy chuẩn bị kỹ lưỡng và tự tin đối mặt với thách thức để chinh phục bài thi HSG cấp huyện môn Toán lớp 8!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho tứ giác ABCD có B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: 1. Chứng minh rằng: AM2 = AH.AC. 2. Chứng minh rằng AHM = AMC và tam giác CDN là tam giác cân. 3. Chứng minh rằng : MHN = MCK.
Đề thi HSG Toán 8 năm 2022 - 2023 trường THCS Cao Xuân Huy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 trường THCS Cao Xuân Huy, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 8 năm 2022 – 2023 trường THCS Cao Xuân Huy – Nghệ An : + Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. + Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. + Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a 2 + b 2 + c 2 + d 2 là tổng của ba số chính phương.
Đề thi Olympic Toán 8 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Chứng minh: AC2 = BC.HC. b) Lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng CH.CB = CI.CK. c) Tia BK cắt tia HA tại D. Chứng minh rằng BHK = BDC. d) Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh BMD = 90°. + Cho hai biểu thức a) Tính P = AB. b) Tìm các giá trị nguyên của x để P là số tự nhiên. c) Tìm tất cả các giá trị của m để phương trình P = m có nghiệm dương duy nhất. + Tìm giá trị lớn nhất của biểu thức A = 8 – x4 + 2×2.
Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hương Trà - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thị xã môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo Hương Trà, tỉnh Thừa Thiên Huế. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hương Trà – TT Huế : + Tìm giá trị của m để cho phương trình 6x – 5m = 3 + 3mx có nghiệm số gấp ba nghiệm số của phương trình. + Cho P = n4 + 4. Tìm tất cả các số tự nhiên n để P là số nguyên tố. + Cho tam giác ABC nhọn. Các đường cao AA’, BB’, CC’; H là trực tâm. a) Tính tổng b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của AIC và AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM. c) Chứng minh.