Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2018 – 2019 trường THPT Nguyễn Du – TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2018 – 2019 trường THPT Nguyễn Du – TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi học kỳ 2 Toán lớp 11 năm 2018 – 2019 trường THPT Nguyễn Du – TP HCM, đề thi gồm 1 trang với 6 bài toán dạng tự luận, học sinh làm bài thi học kỳ trong khoảng thời gian 90 phút, kỳ thi nhằm giúp nhà trường và giáo viên bộ môn đánh giá chính xác năng lực học tập môn Toán của học sinh khối lớp 11, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2018 – 2019 trường THPT Nguyễn Du – TP HCM : + Cho đồ thị (C): y = f(x) = x^3 – 3x^2 + x – 1. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm A thuộc đồ thị (C) có hoành độ bằng x0 = 1. + Viết phương trình tiếp tuyến của đồ thị (C): y = f(x) = (2x – 3)/(x + 1), biết tiếp tuyến vuông góc với đường thẳng d: y = -1/5x + 2019. [ads] + Cho hình chóp tứ giác S.ABCD có mặt đáy (ABCD) là hình vuông tâm O, biết cạnh AC = 2a, SA = a√3 và SA vuông góc với (ABCD). a) Chứng minh: BD vuông góc (SAC) và (SAC) vuông góc (SBD). b) Xác định và tính góc giữa đường thẳng SO và (ABCD). c) Tính khoảng cách từ điểm A đến mặt phẳng (SBD).

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường Quốc tế Á Châu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường TH – THCS – THPT Quốc tế Á Châu, thành phố Hồ Chí Minh.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình 3 2 2 7 5 3 t S t t t trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động (t > 0) và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc của vật tại thời điểm mà vật có vận tốc nhỏ nhất. + Chứng minh phương trình 2 4 2 m m x x mx 4 2 3 0 luôn có nghiệm với mọi giá trị thực của tham số m. + Cho hình vuông ABCD cạnh a. Gọi I, J, K lần lượt là trung điểm các đoạn thẳng AB, BC, CD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại điểm I lấy điểm S sao cho tam giác SAB đều. a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) và tam giác SBC vuông. b) Chứng minh đường thẳng DJ vuông góc với mặt phẳng (SIC). c) Xác định và tính góc giữa đường thẳng SD với mặt phẳng (SAB). d) Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Lý Thường Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lý Thường Kiệt, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Lý Thường Kiệt – TP HCM : + Cho hàm số 2 x y x có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm M(1;1). + Cho đường cong 3 1 1 x C y x. Viết phương trình tiếp tuyến của (C) biết rằng tiếp tuyến song song với đường thẳng d y x 4 1. + Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a; H là trung điểm của AB; SH vuông góc với mặt phẳng (ABCD) 6 2 a SA. a) Chứng minh: SBC SAB. b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c) Gọi M là trung điểm SA. Tính khoảng cách từ điểm M đến mặt phẳng (SCD).
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Tam Phú - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Tam Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Tam Phú – TP HCM : + Tính đạo hàm các hàm số sau? + Viết phương trình tiếp tuyến với đường cong 3 2 C y x x 2 1 tại điểm có hoành độ x0 = −1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a SA a 3 SA ABCD a) Chứng minh: SAC SBD. b) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). c) Gọi I là hình chiếu của A lên SC. Từ I lần lượt vẽ các đường thẳng song song với SB, SD cắt BC, CD tại P, Q. Gọi E là giao điểm của PQ và AB. Tính khoảng cách từ E đến mặt phẳng (SBD).