Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Phạm Hùng Hải

Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày lý thuyết cần nhớ, các dạng toán thường gặp và bài tập tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit (Toán 12 phần Giải tích chương 2). MỤC LỤC : Chương 2 . HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. §1 – LŨY THỪA 1. A LÝ THUYẾT CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Tính giá trị biểu thức 2. + Dạng 2. Rút gọn biểu thức liên quan đến lũy thừa 3. + Dạng 3. So sánh hai lũy thừa 4. C BÀI TẬP TỰ LUYỆN 6. §2 – HÀM SỐ LŨY THỪA 9. A LÝ THUYẾT CẦN NHỚ 9. B CÁC DẠNG TOÁN THƯỜNG GẶP 9. + Dạng 1. Tìm tập xác định của hàm số lũy thừa 9. + Dạng 2. Tìm đạo hàm của hàm số lũy thừa 12. + Dạng 3. Đồ thị của hàm số lũy thừa 14. C BÀI TẬP TỰ LUYỆN 15. §3 – LÔGARIT 18. A LÝ THUYẾT CẦN NHỚ 18. B CÁC DẠNG TOÁN CƠ BẢN 19. + Dạng 1. So sánh hai lôgarit 19. + Dạng 2. Công thức, tính toán lôgarit 20. + Dạng 3. Phân tích biểu thức lôgarit theo các lo-ga-rit cho trước 22. + Dạng 4. Xác định một số nguyên dương có bao nhiêu chữ số 23. + Dạng 5. Tổng hợp biến đổi lôgarit nâng cao 24. C BÀI TẬP TỰ LUYỆN 29. §4 – HÀM SỐ MŨ, HÀM SỐ LÔGARIT 34. A LÝ THUYẾT CẦN NHỚ 34. B CÁC DẠNG TOÁN CƠ BẢN 36. + Dạng 1. Tìm tập xác định 36. + Dạng 2. Tính đạo hàm 38. + Dạng 3. Giá trị lớn nhất và giá trị nhỏ nhất 41. + Dạng 4.Các bài toán liên quan đến đồ thị 42. C BÀI TẬP TỰ LUYỆN 46. §5 – PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT CƠ BẢN 49. A LÝ THUYẾT CẦN NHỚ 49. B CÁC DẠNG TOÁN THƯỜNG GẶP 50. + Dạng 1. Giải phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 50. + Dạng 2. Giải phương trình mũ bằng phương pháp đặt ẩn phụ 52. + Dạng 3. Giải phương trình mũ bằng phương pháp lôgarít hóa 54. + Dạng 4. Giải phương trình lôgarit cơ bản, phương pháp đưa về cùng cơ số 55. + Dạng 5. Giải phương trình lôgarít bằng phương pháp đặt ẩn phụ 57. + Dạng 6. Giải phương trình mũ và lôgarít bằng phương pháp hàm số 59. C BÀI TẬP TỰ LUYỆN 63. §6 – BẤT PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH LOGARIT CƠ BẢN 68. A LÝ THUYẾT CẦN NHỚ 68. B CÁC DẠNG TOÁN THƯỜNG GẶP 69. + Dạng 1. Giải bất phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 69. + Dạng 2. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ 72. + Dạng 3. Giải bất phương trình logarit cơ bản, phương pháp đưa về cùng cơ số 74. + Dạng 4. Giải bất phương trình lôgarit bằng phương pháp đặt ẩn phụ 76. + Dạng 5. Bài toán lãi kép 77. C BÀI TẬP TỰ LUYỆN 80. §7 – PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ, LOGARIT CÓ CHỨA THAM SỐ 83. A CÁC DẠNG TOÁN THƯỜNG GẶP 83. + Dạng 1. Phương trình có nghiệm đẹp – Định lý Vi-ét 83. + Dạng 2. Phương trình không có nghiệm đẹp – Phương pháp hàm số 88. + Dạng 3. Bất phương trình – Phương pháp hàm số 92. B BÀI TẬP TỰ LUYỆN 96. §8 – ĐỀ TỔNG ÔN 99. A ĐỀ SỐ 1 99. Bảng đáp án 102. B ĐỀ SỐ 2 103. Bảng đáp án 105.

Nguồn: toanmath.com

Đọc Sách

Bài toán min - max liên quan hàm số mũ - logarit nhiều biến - Đặng Việt Đông
Tài liệu gồm 51 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển chọn và hướng dẫn giải 96 bài toán min – max (giá trị nhỏ nhất – giá trị lớn nhất / GTNN – GTLN) liên quan đến hàm số mũ, hàm số logarit nhiều biến số, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT 2020 môn Toán. Dạng toán 1. Áp dụng đánh giá, áp dụng bất đẳng thức. Dạng toán 2. Áp dụng pháp hàm số, hàm đặc trưng. + Áp dụng hàm số. + Áp dụng hàm đặc trưng. Dạng toán 3. Áp dụng hình học giải tích.
160 câu vận dụng cao mũ - logarit ôn thi THPT môn Toán
Tài liệu gồm 15 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) mũ – logarit có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao mũ – logarit ôn thi THPT môn Toán: + Cho phương trình m ln2 (x + 1) − (x + 2 − m) ln(x + 1) − x − 2 = 0 (1). Tập tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a; +∞). Khi đó a thuộc khoảng? + Cho phương trình e m cos x−sin x − e 2(1−sin x) = 2 − sin x − m cos x với m là tham số thực. Gọi S là tập tất cả các giá trị của m để phương trình có nghiệm. Khi đó S có dạng (−∞; a] ∪ [b; +∞). Tính T = 10a + 20. [ads] + Do có nhiều cố gắng trong học kì I năm học lớp 12, Hoa được bố mẹ cho chọn một phần thưởng dưới 5 triệu đồng. Nhưng Hoa muốn mua một cái laptop 10 triệu đồng nên bố mẹ đã cho Hoa 5 triệu đồng gửi vào ngân hàng (vào 1/1/2019) với lãi suất 1% trên tháng đồng thời ngày đầu tiên mỗi tháng (bắt đầu từ ngày 1/2/2019) bố mẹ sẽ cho Hoa 300000 đồng và cũng gửi tiền vào ngân hàng với lãi suất 1% trên tháng. Biết hàng tháng Hoa không rút lãi và tiền lãi được cộng vào tiền vốn cho tháng sau chỉ rút vốn vào cuối tháng mới được tính lãi của tháng ấy. Hỏi ngày nào trong các ngày dưới đây là ngày gần nhất với ngày 1/2/2019 mà bạn Hoa có đủ tiền để mua laptop?
Phương trình nghiệm nguyên liên quan đến mũ - logarit - Trần Trọng Trị
Tài liệu gồm 27 trang được biên soạn bởi tác giả Trần Trọng Trị (giáo viên Toán tiếp sức chinh phục kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020 trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn phương pháp giải bài toán phương trình nghiệm nguyên liên quan đến mũ – logarit, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong đề thi thử THPT Quốc gia môn Toán. 1. Dạng 1: Có đúng một biến nguyên và rút được biến nguyên này theo biến còn lại. Đến đây, ta xét hàm để tìm miền giá trị cho biến nguyên đó. 2. Dạng 2: Khi phương trình rút gọn là phương trình bậc hai theo biến không nguyên. Ta sử dụngđiều kiện có nghiệm của phương trình bậc hai để tìm miền giá trị cho biến nguyên. 3. Dạng 3: Cả hai biến đều nguyên, trong đó có một biến nguyên thuộc tập K cho trước, với K có thể là một khoảng, một đoạn. Khi đó, ta cũng rút biến nguyên thuộc K theo biến còn lại để tìm miền giá trị cho biến đó. [ads] 4. Dạng 4: Cả hai biến đều nguyên, rút được biến này theo biến kia đưa về bài toán tìm điểm nguyên trên các đường cong đơn giản. 5. Dạng 5: Đưa phương trình về tổng các bình phương của hai biến nguyên. 6. Dạng 6: Đưa về phương trình tích của hai biến nguyên. 7. Dạng 7: Sử dụng tính chất chia hết. 8. Dạng 8: Đếm điểm nguyên trong các hình cơ bản.
Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ - logarit - Hoàng Xuân Bính
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên Toán tiếp sức chinh phục kì thi tốt nghiệp THPT năm học 2019 – 2020), hướng dẫn phương pháp giải các bài toán giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN / max – min) của các biểu thức liên quan đến khái niệm hàm số mũ và logarit, đây là dạng toán thường gặp trong các đề thi thử tốt nghiệp THPT môn Toán. Các dạng toán trong tài liệu bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính: + Dạng toán 1 : Đặt ẩn phụ để biến đổi logarit. + Dạng toán 2 : Sử dụng bất đẳng thức cổ điển (Cauchy, Cauchy Schwarz …). + Dạng toán 3 : Cực trị hình học.