Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa

Nằm trong kế hoạch ôn tập, rèn luyện kiến thức đối với học sinh khối 12, hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020, vừa qua, tổ Toán trường THPT Thạch Thành số 3, tỉnh Thanh Hóa tiếp tục tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán lần thi thứ hai. Đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa mã đề 001, đề gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Để làm một sản phẩm lịch Canh Tý 2020 để bàn như hình vẽ cần dùng 50cm2 giấy cho mỗi mặt (ứng với một tháng trong năm). Biết đơn giá giấy trên thị trường là 200.000 đồng/m2. Hỏi chi phí giấy cần dùng để làm một sản phẩm lịch trên bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là điểm đối xứng với C qua B và F là điểm thỏa mãn: SF = -2BF. Mặt phẳng (DEF) chia khối chóp S.ABCD thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ). Tính tỉ số V1/V2. [ads] + Nhân dịp đi du Xuân Canh Tý, ba bạn Trang, Hoàng, Tân rủ nhau rút quẻ xem vận mệnh. Khi đó trong hộp chỉ còn các quẻ có số thứ tự từ 5 đến 15 (luôn có ít nhất ba quẻ cùng ghi một số). Mỗi bạn rút ngẫu nhiên một quẻ và yêu cầu bạn Linh tính xác suất để tổng các số ghi trên ba quẻ là một số chia hết cho 3. Kết quả đúng là? + Tìm tất cả các giá trị của tham số m để đường thẳng đi qua cực đai, cực tiểu của đồ thị hàm số y = x^3 – 3mx^2 + 2 cắt đường tròn (C) tâm I(1;1), bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất? + Bà chủ khách sạn trên đèo Mã Pì Lèng muốn trang trí một góc nhỏ trên ban công sân thượng cho đẹp nên quyết định thuê nhân công xây một bức tường gạch với xi măng (như hình vẽ), biết hàng dưới cùng có 500 viên, mỗi hàng tiếp theo đều có ít hơn hàng trước 1 viên và hàng trên cùng có 1 viên. Hỏi số gạch cần dùng để hoàn thành bức tường trên là bao nhiêu viên?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2023 lần 1 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi (mã đề 123). Trích dẫn Đề thi thử Toán TN THPT 2023 lần 1 trường chuyên Lê Khiết – Quảng Ngãi : + Cho lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân tại B và AB = a3. Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) là điểm H thuộc cạnh AC sao cho HC = 2HA. Mặt bên (ABB’A’) tạo với đáy một góc 60°. Thể tích khối lăng trụ đã cho bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AB = BC = a3, góc SAB = SCB = 90° và khoảng cách từ A đến mặt phẳng (SBC) bằng a2. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC. + Trong không gian Oxy, cho điểm A(0;0;3) và điểm B thay đổi thuộc mặt phẳng (Oxy) sao 3/2. Gọi C là điểm trên tia Oz thỏa mãn d[C;AB] = d[C;OB] = k. Thể tích của khối tròn xoay tạo bởi tập hợp tất cả các điểm M mà CM =< k thuộc khoảng nào dưới đây?
Đề thi thử TN THPT 2023 môn Toán trường chuyên Biên Hòa - Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT chuyên Biên Hòa, tỉnh Hà Nam (mã đề 101). Trích dẫn Đề thi thử TN THPT 2023 môn Toán trường chuyên Biên Hòa – Hà Nam : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d và mặt phẳng (P): 3x – 3y + 2z + 6 = 0. Khẳng định nào dưới đây đúng? A. d nằm trong (P). B. d song song với (P). C. d vuông góc với (P). D. d cắt và không vuông góc với (P). + Cửa hàng A có đặt trước sảnh một cái nón lớn với chiều cao 1,35 m và sơn cách điệu hoa văn trang trí một phần mặt ngoài của hình nón ứng với cung nhỏ AB như hình vẽ. Biết AB = 1,45 m, ACB = 150° và giá tiền trang trí là 2.000.000 đồng mỗi mét vuông. Hỏi số tiền mà cửa hàng A cần dùng để trang trí là bao nhiêu? + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;2), B(2;–2;0). Gọi I1(1;1;−1) và I2(3;1;1) là tâm của hai đường tròn nằm trên hai mặt phẳng khác nhau và có chung một dây cung AB. Biết rằng luôn có một mặt cầu (S) đi qua cả hai đường tròn ấy. Tính bán kính R của (S).
Đề thi thử TN THPT 2023 môn Toán trường PTDL Hermann Gmeiner - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán trường PTDL Hermann Gmeiner, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết mã đề 001. Trích dẫn Đề thi thử TN THPT 2023 môn Toán trường PTDL Hermann Gmeiner – TP HCM : + Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số 2 yx x 4 4 trục hoành và trục tung. Đường thẳng d qua A(0;4) và có hệ số góc k k chia hình (H) thành hai phần có diện tích bằng nhau. Giá trị của k bằng? + Trong không gian Oxyz cho mặt cầu 2 22 4 Sx y z và hai điểm A(1;2;4), B(0;0;1). Mặt phẳng P ax by cz 3 0 abc đi qua A B và cắt S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của abc bằng? + Cho khối nón đỉnh S có đáy là đường tròn tâm O bán kính R. Trên đường tròn (O) lấy hai điểm A B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng 2 2R. Thể tích khối nón đã cho bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Trần Phú - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán trường THPT Trần Phú, tỉnh Phú Yên; đề thi có đáp án mã đề 132 – 209 – 357 – 485. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Trần Phú – Phú Yên : + Trong mặt phẳng Oxy cho parabol 2 P y x và một điểm 2 A a a với a 0 nằm trên P. Gọi là tiếp tuyến của P tại A d là đường thẳng đi qua A và vuông góc với. Biết diện tích của hình phẳng giới hạn bởi P và d (phần gạch sọc) đạt giá trị nhỏ nhất. Khi đó a thuộc khoảng nào sau đây? + Cho hình chóp S ABC có SA vuông góc với mặt phẳng ABC SA a 2 tam giác ABC vuông tại B AB a 3 và BC a (minh họa hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng ABC bằng? + Tìm tất cả các giá trị thực của tham số m để điểm 3 M m m 2 tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số 3 2 y x m x m m x C 2 3 (2 1) 6 một tam giác có diện tích nhỏ nhất.