Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán góc và khoảng cách trong đề tham khảo THPTQG 2020 môn Toán

Tài liệu gồm 34 trang, phân tích và phát triển bài toán góc và khoảng cách trong đề tham khảo THPTQG 2020 môn Toán, cụ thể đó là câu 37 và câu 49. Câu 37 là bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong hình chóp có đường cao cho trước. Một bài ở mức độ vận dụng. Có hai ý tưởng nổi bật trong bài: + Thứ nhất: Là bài toán tính khoảng cách giữa hai đường thẳng chéo nhau và không vuông góc với nhau: Một đường nằm trong mặt phẳng đáy và một đường là cạnh bên. + Thứ hai: Đáy của hình chóp là một hình thang rất hay, rất đặc biệt: từ đó dẫn đến đường chéo vuông góc với cạnh bên, là rút ngắn cách tính khoảng cách. [ads] Câu 49 có hai nội dung trọng tâm: Thể tích và Góc giữa hai mặt phẳng. + Phân tích về bài toán thể tích: Một bài toán thể tích kiểm tra được hai kỹ năng: Thứ nhất là xác định và tính đường cao; Thứ hai là tính diện tích đáy. + Bài toán góc giữa hai mặt phẳng luôn là bài toán khó nhất trong các bài toán hình học không gian. Câu 49 đưa ra hai vấn đề khó thường gặp và kiểm tra kiến thức cơ bản về góc: Khó thứ nhất là cái khó chung của bài toán hình học không gian, là hình trong bài không có đường cao cho trước. Khó thứ hai là cái khó riêng của bài toán góc giữa hai mặt phẳng. Ở đây câu 49 này còn kết hợp hết cái khó của bài toán góc: Cho góc giữa hai mặt bên vào giả thiết. Muốn giải quyết được bài toán này phải khai thác được giả thiết góc.

Nguồn: toanmath.com

Đọc Sách

Thể tích khối đa diện phức hợp (VDC) - Đặng Việt Đông
Tài liệu gồm 52 trang, được tổng hợp bởi thầy Đặng Việt Đông, hướng dẫn giải bài toán thể tích khối đa diện phức hợp, đây là một lớp bài toán vận dụng cao (VDC) thường gặp trong đề thi thử tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Thể tích khối đa diện: Thể tích khối chóp, Thể tích khối lăng trụ, Thể tích khối lập phương, Thể tích khối hộp chữ nhật. 2. Thể tích khối đa diện được phân chia: Khối chóp tam giác, Khối chóp tứ giác có đáy là hình hành, Thể tích khối lăng trụ tam giác, Khối hộp. [ads] II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ + Khối đa diện cắt ra từ một khối chóp. + Khối chóp cụt. + Khối hình hộp khác. + Khối lăng trụ khác. + Khối da diện cắt ra từ khối lăng trụ.
Tổng ôn tập TN THPT 2020 môn Toán Thể tích khối đa diện
Tài liệu gồm 50 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Thể tích khối đa diện: 1. Công thức tính thể tích khối chóp. 2. Công thức tính thể tích khối lăng trụ. + Công thức tính thể tích khối lập phương. + Công thức tính thể tích khối hộp chữ nhật. 3. Xác định diện tích đáy. 4. Xác định chiều cao. + Hình chóp có một mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. + Hình chóp có hai mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. + Hình chóp có các cạnh bên bằng nhau: Chân đường cao của hình chóp là tâm đường tròn ngoại tiếp đa giác đáy.
Tổng ôn tập TN THPT 2020 môn Toán Góc và khoảng cách trong không gian
Tài liệu gồm 47 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề góc và khoảng cách trong không gian, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Góc và khoảng cách trong không gian: CHỦ ĐỀ 1 . GÓC TRONG KHÔNG GIAN. Bài toán 1. Góc giữa đường thẳng a và đường thẳng b. + Phương pháp 1. Sử dụng song song. + Phương pháp 2. Sử dụng tích vô hướng. + Phương pháp 3. Ghép vào hệ trục tọa độ Oxyz. Bài toán 2. Góc giữa đường thẳng AB và mặt phẳng (P). + Phương pháp 1. Sử dụng kiến thức Hình học 11. + Phương pháp 2. Ghép vào hệ trục tọa độ Oxyz. [ads] Bài toán 3. Góc giữa mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 1. Dựa vào định nghĩa. + Phương pháp 2. Tìm hai đường thẳng d1 và d2 lần lượt vuông góc với mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 3. Sử dụng công thức hình chiếu. + Phương pháp 4. Sử dụng công thức sin a. + Phương pháp 5. Ghép vào hệ trục tọa độ Oxyz. CHỦ ĐỀ 2 . KHOẢNG CÁCH TRONG KHÔNG GIAN. Bài toán 1. Tính khoảng cách từ chân đường cao của hình chóp đến mặt bên của hình chóp. Bài toán 2. Tính khoảng cách giữa cạnh bên và cạnh thuộc mặt đáy.
Bài toán khoảng cách trong không gian - Nguyễn Tất Thu
Bài viết này sẽ trình bày cách tính khoảng cách từ một điểm đến mặt phẳng và khoảng cách giữa hai đường thẳng chéo nhau. Quy trình tính khoảng cách là chúng ta tìm cách chuyển về khoảng cách từ chân đường cao đến một mặt phẳng có giao tuyến với mặt đáy, hoặc khoảng cách từ một điểm nằm trong mặt phẳng đáy đến một mặt phẳng chứa đường cao của hình chóp. Với mô hình lăng trụ, ta chỉ cần tách phần cần tính để đưa về mô hình của hình chóp. Bài toán 1 . Khoảng cách từ một điểm đến mặt phẳng. Tính khoảng cách từ điểm M đến mặt phẳng (α). Để tính được khoảng từ điểm M đến mặt phẳng (α) ta có các cách sau: + Cách 1: Xác định hình chiếu vuông góc H của M lên (α). + Cách 2: Sử dụng công thức thể tích. + Cách 3: Chuyển việc tính khoảng cách từ M về tính khoảng cách từ điểm N dễ tính hơn. + Cách 4: Gắn hệ trục tọa độ Oxyz và sử dụng công thức khoảng cách từ điểm đến mặt phẳng. [ads] Bài toán 2 . Khoảng cách giữa hai đường thẳng chéo nhau. Cho hai đường thẳng chéo nhau a và b. Tính khoảng cách giữa a và b. Để tính khoảng cách giữa hai đường thẳng chéo nhau ta có thể dùng một trong các cách sau: + Cách 1: Dựng đoạn vuông góc chung MN của a và b. Khi đó d(a,b) = MN. + Cách 2: Dựng mặt phẳng (α) đi qua a và song song với b, khi đó: d(a,b) = d(a,(α)) = d(M,(α)) với M là điểm bất kì thuộc (α). + Cách 3: Dựng hai mặt phẳng (α) đi qua a và song song với b, (β) đi qua b và song song với a. Khi đó: d(a,b) = d((α),(β)). + Cách 4: Sử dụng phương pháp tọa độ.