Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Hoàn Kiếm Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Hoàn Kiếm Hà Nội Đề thi học kì 1 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Hoàn Kiếm Hà Nội Chúng ta đã có trong tay đề thi học kì 1 môn Toán lớp 9 năm học 2020 - 2021 của phòng Giáo dục và Đào tạo Hoàn Kiếm, Hà Nội. Đề thi này đưa ra những bài toán thú vị và cung cấp cho học sinh cơ hội thể hiện khả năng giải toán, tư duy logic và khả năng xử lý vấn đề. Trích dẫn một số câu hỏi từ đề thi: Trong mặt phẳng tọa độ Oxy, với hai đường thẳng d: y = 2x + 3 và d': y = mx + 2. Hãy vẽ đường thẳng d trong hệ tọa độ Oxy và tìm các giá trị của m để dường thẳng d song song với d'. Tìm giá trị nguyên của m để hai đường thẳng d và d' cắt nhau tại điểm có hoành độ là số nguyên. Cho đường tròn O có đường kính AB. Trên tia tiếp tuyến của O tại A, lấy điểm M. Đường thẳng MB cắt đường tròn O tại C. Hãy chứng minh tam giác ABC vuông tại A và MA2 = MC*MB. Tiếp theo, kẻ đường thẳng vuông góc với OM tại I và cắt đường tròn O tại D, chứng minh rằng bốn điểm A, M, C, D thuộc cùng một đường tròn. Đề cho a, b, c là các số thực không âm thỏa mãn a*b*c = 1. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P = ab*c + bc*a + ca*b. Đề thi này không chỉ giúp học sinh củng cố kiến thức mà còn khuyến khích sự sáng tạo, tư duy và khả năng giải quyết vấn đề. Chúc các em học sinh tự tin và thành công trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kì 1 Toán 9 năm 2022 - 2023 phòng GDĐT Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào sáng thứ Tư ngày 28 tháng 12 năm 2022. Trích dẫn Đề kiểm tra học kì 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Cầu Giấy – Hà Nội : + Landmark 81 là tòa nhà chọc trời ở Thành phố Hồ Chí Minh, hiện đang giữ kỉ lục là tòa nhà cao nhất Việt Nam, với thiết kế gồm 81 tầng, lấy cảm hứng từ những bó tre truyền thống, tượng trưng cho sức mạnh và sự đoàn kết của dân tộc Việt Nam. Tại một thời điểm trong ngày, các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 65° và bóng của tòa nhà đó trên mặt đất dài 215m. Tính chiều cao của tòa nhà (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho nửa đường tròn (O;R) đường kính AB. Qua A kẻ tia tiếp tuyến Ax với nửa đường tròn (Ax và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Trên tia Ax lấy điểm D. Từ D kẻ tiếp tuyến DC với nửa đường tròn (O) (C là tiếp điểm, C khác A). a) Chứng minh bốn điểm A, O, C, D cùng thuộc một đường tròn. b) Đoạn thẳng BD cắt nửa đường tròn (O) tại điểm thứ hai là F. Chứng minh AD2 = DF.DB và DCF = DBC. c) Kẻ CH vuông góc với AB tại H, CH cắt BD tại K. Chứng minh K là trung điểm CH. + Cho các số thực x và y thoả mãn x2 – xy + y2 = 9. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 + y2.
Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Hải Dương : + Cho hàm số bậc nhất: y = (m – 3)x + 2m – 5 (m là tham số và m khác 3) có đồ thị (d) a) Tìm điều kiện của m để hàm số đồng biến trên R. b) Tìm giá trị của m để đường thẳng (d) đi qua điểm A (-1;4). c) Tìm giá trị của m để hai đường thẳng (d) và (d’): y = 2x + 4 cắt nhau tại điểm có hoàng độ bằng -3/4. + Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Tia Ax nằm giữa AB và AO cắt đường tròn (O;R) tại hai điểm C và D (C nằm giữa A và D). Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H. a) Tính OH.OA theo R. b) Cho ABC = ADB. Chứng minh AC.AD = AH.AO và CHO + CDO = 180° c) Qua C kẻ tiếp tuyến thứ hai với đường tròn (O) cắt OM tại E. Chứng minh ba điểm E, H, B thẳng hàng. + Cho a, b, c dương thỏa mãn 6a + 3b + 2c = abc. Tìm giá trị lớn nhất của biểu thức T.
Đề học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi được biên soạn theo cấu trúc 30% trắc nghiệm + 70% tự luận, thời gian làm bài 60 phút; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 12 năm 2022. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, BC = 15 cm. Khi đó độ dài AH bằng? + Cho hàm số y = (m – 2)x + 11 (*) a) Tìm m để hàm số (*) đồng biến trên R. b) Tìm m để đồ thị hàm số (*) và đường thẳng y = x + m2 + 2 cắt nhau tại một điểm trên trục tung. + Cho đường tròn (O;3cm) và một điểm M sao cho OM = 5cm. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là hai tiếp điểm). Gọi I là giao điểm của OM và AB. a) Tính độ dài đoạn AM và giá trị tan của góc AMO. b) Chứng minh OM vuông góc AB tại I. c) Từ B kẻ đường kính BC của đường tròn (O), đường thẳng MC cắt đường tròn (O) tại D (D khác C). Chứng minh: MDO đồng dạng với MIC.
Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bến Cát - Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Bến Cát, tỉnh Bình Dương; đề thi dành cho học sinh các lớp 9 THCS Đại trà – chương trình Toán 9 chuẩn. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bến Cát – Bình Dương : + Cho hàm số y = − x có đồ thị (d1) và hàm số y = 1/2x + 1 có đồ thị (d2) a) Vẽ (d1), (d2) trên cùng mặt phẳng tọa độ Oxy b) Gọi A là giao điểm của hai đường thẳng (d1) và (d2). Tìm tọa độ giao điểm A bằng phép tính. c) Tìm m để đường thẳng y = (2m − 1)x + 2 đi qua điểm A. + Cho đường tròn (O;R) và điểm M thuộc đường tròn (O). Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại C và D và cắt OM tại H. a) Chứng minh H là trung điểm của CD. b) Với điểm K ở ngoài đường tròn (O;R). Vẽ hai tiếp tuyến tại KC, KD của (O) (C và D là các tiếp điểm). Chứng minh tam giác OMC đều. Tính OK theo R. c) Đường thẳng vuông góc với OC tại O cắt DK tại N. Chứng minh tam giác NKO là tam giác cân.