Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức

Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Biến đổi các biểu thức hữu tỉ. + Biểu thức hữu tỉ là một phân thức hoặc biểu thị một dãy các phép toán: cộng, trừ, nhân chia trên những phân thức. + Biến đổi một hiểu thức hữu tỉ thành một phân thức nhờ các quy tắc của phép toán cộng, trừ, nhân, chia các phân thức đã học. 2. Giá trị của phân thức. + Giá trị của một phân thức chỉ đuợc xác định với điều kiện giá trị của mẫu thức khác 0. + Chú ý: Biểu thức hữu tỉ có hai biến x và y thì giá trị của biểu thức đó chi đuợc xác định với các cặp số (x;y) làm cho giá trị của mẫu thức khác 0. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm điều kiện xác định của phân thức. Ta xác định các giá trị của biến để mẫu thức khác 0. Dạng 2 : Biến đổi biểu thức hữu tỷ thành phân thức. + Bước 1. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. + Bước 2. Biến đổi cho tới khi được một phân thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 3 : Thực hiện phép tính với các biểu thức hữu tỷ. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. Dạng 4 : Tìm x để giá trị của một phân thức đã cho thỏa mãn điều kiện cho trước. Ta sử dụng các kiến thức sau: + A/B > 0 khi và chỉ khi A và B cùng dấu. + A/B < 0 khi và chỉ khi A và B trái dấu. + Hằng đẳng thức đáng nhớ và chú ý a^2 >= 0 với mọi giá trị của a. + Với a; b thuộc Z và b khác 0 ta có: a/b thuộc Z khi và chỉ khi b thuộc Ư(a).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ ba
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ ba, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Chỉ ra hai cặp góc tương ứng bằng nhau trong hai tam giác để suy ra hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ ba (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ.
Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.
Chuyên đề khái niệm hai tam giác đồng dạng
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề khái niệm hai tam giác đồng dạng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN II. DẠNG BÀI TẬP CƠ BẢN Dạng 1. Vẽ tam giác đồng dạng với tam giác cho trước. Chứng minh hai tam giác đồng dạng. 1. Vẽ tam giác đồng dạng với tam giác cho trước. + Xác định tỉ số đồng dạng. + Kẻ đường thẳng song song với một cạnh của tam giác. 2. Chứng minh hai tam giác đồng dạng. + Sử dụng định nghĩa hoặc định lí nhận biết hai tam giác đồng dạng. Dạng 2: Tính độ dài cạnh, tỉ số đồng dạng thông qua các tam giác đồng dạng. Dạng 3: Chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng.