Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 18 tháng 06 năm 2022. Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD&ĐT Hà Nam bao gồm hai câu hỏi như sau: Câu 1: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx + 3 - 2m (với m là tham số). Hỏi m để đường thẳng (d) đi qua điểm A(2;1). Câu 2: Lớp 9A giao cho An đi mua bánh và kẹo để tổ chức liên hoan. An mua tất cả 15 hộp bánh và 5 túi kẹo với số tiền phải trả là 850 nghìn đồng. Biết rằng, giá mỗi hộp bánh là như nhau, giá mỗi túi kẹo là như nhau và giá một hộp bánh hơn giá một túi kẹo là 10 nghìn đồng. Hãy tính giá tiền để mua một hộp bánh và giá tiền để mua một túi kẹo. Câu 3: Cho đường tròn tâm O có đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA và E là điểm thuộc đường tròn tâm O (E không trùng với A và B). Chứng minh: tứ giác AMEI nội tiếp. Câu 4: Gọi P là giao điểm của AE và MI, Q là giao điểm của BE và NI. Chứng minh hai đường thẳng PQ và BN vuông góc với nhau khi ba điểm E, I, F thẳng hàng. Mong rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Tuyên Quang; đề được biên soạn theo hình thức 75% trắc nghiệm + 25% tự luận (theo điểm số), phần trắc nghiệm gồm 30 câu, phần tự luận gồm 03 câu, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Tuyên Quang : + Trên nửa đường tròn đường kính AD lấy hai điểm B C phân biệt sao cho B ở giữa A và C (B khác A và C khác D). Gọi E là giao điểm của AC và BD; F là chân đường vuông góc kẻ từ E xuống AD. Chứng minh rằng: a) Tứ giác DCEF nội tiếp được một đường tròn. b) Hai tam giác CEF và CBA đồng dạng với nhau. + Một người mua 0,3 kg thịt lợn và 0,4 kg thịt bò hết 148000 đồng. Một người khác mua 0,4 kg thịt lợn và 0,3 kg thịt bò hết 139000 đồng (đơn giá mua thịt lợn và thịt bò của hai người là bằng nhau). Hỏi giá 1 kg thịt bò là bao nhiêu? + Trong một đường tròn, khẳng định nào dưới đây sai? A. Dây nào nhỏ hơn thì dây đó gần tâm hơn. B. Hai dây cách đều tâm thì bằng nhau. C. Hai dây bằng nhau thì cách đều tâm. D. Dây nào lớn hơn thì dây đó gần tâm hơn.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La; đề được biên soạn theo hình thức 20% trắc nghiệm + 80% tự luận (theo điểm số), phần trắc nghiệm gồm 10 câu, phần tự luận gồm 05 câu, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 14 tháng 06 năm 2021. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La : + Một trường THPT nhận được 650 hồ sơ đăng kí thi tuyển sinh vào lớp 10 với hai hình thức: đăng kí trực tuyến và đăng kí trực tiếp tại nhà trường. Số hồ sơ đăng kí trực tuyến nhiều hơn số hồ sơ đăng kí trực tiếp là 120 hồ sơ. Hỏi nhà trường đã nhận bao nhiêu hồ sơ đăng kí trực tuyến? + Cho tam giác ABC nhọn có đường cao AD và H là trực tâm tam giác. Vẽ đường tròn tâm I đường kính BC, từ A kẻ các tiếp tuyến AM AN với đường tròn I (M N là các tiếp điểm). a) Chứng minh tứ giác AMIN nội tiếp đường tròn. b) Chứng minh AMN ADN và AHN AND. c) Chứng minh ba điểm M H N thẳng hàng. + Cho parabol 2 P y x và hai điểm A(-3;9), B(2;4). Tìm điểm M có hoành độ thuộc khoảng (-3;2) trên (P) sao cho diện tích tam giác MAB lớn nhất.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB gồm một đoạn lên dốc dài 5km và một đoạn xuống dốc dài 10km. Một người đi xe đạp từ A đến B hết 1 giờ 10 phút và đi từ B về A hết 1 giờ 20 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc, lúc xuống dốc của người đi xe đạp. + Cho hình thang ABCD có A D 90 AD AB 4 CD AB 3. Gọi M là trung điểm của AD, E là hình chiếu vuông góc của M lên BC. Tia BM cắt đường thẳng CD tại F. a) Chứng minh rằng MAE MBE. b) Chứng minh rằng ABDF là hình bình hành. c) Đường thẳng qua M vuông góc với BF cắt cạnh BC tại N. Gọi H là hình chiếu vuông góc của N lên CD. Chứng minh rằng tam giác BNF cân. d) Chứng minh rằng đường thẳng MH đi qua trung điểm của DE. + Cho hàm số 2 y ax. a) Xác định hệ số a biết rằng đồ thị của hàm số cắt đường thẳng y x 2 tại điểm A có hoành độ bằng 1. b) Vẽ đồ thị của hàm số y x 2 và đồ thị hàm số 2 y ax với giá trị của a vừa tìm được ở câu a trên cùng một mặt phẳng tọa độ. c) Dựa vào đồ thị, hãy xác định tọa độ giao điểm thứ hai (khác A) của hai đồ thị vừa vẽ trong câu b.
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Cho hệ phương trình 2 1 3 4 1 x y m x y m (m là tham số). a) Giải hệ phương trình với m 2. b) Tìm m để hệ phương trình có nghiệm duy nhất x y thỏa mãn 2 2 3 2 x y. + Cho đường tròn O đường kính AB. Trên tia đối của tia AB lấy điểm C (C không trùng với B). Kẻ tiếp tuyến CD với đường tròn O (D là tiếp điểm), tiếp tuyến tại A của đường tròn O cắt đường thẳng CD tại E. a) Chứng minh rằng tứ giác AODE nội tiếp. b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn O (K không trùng với B). Chứng minh EHK KBA. c) Đường thẳng vuông góc với AB tại O cắt CE tại M. Chứng minh 1 EA MO EM MC. + Cho a, b, c là các số dương thỏa mãn 2 2 2 a b c 1. Tìm giá trị lớn nhất của biểu thức A a bc 1 2 1 2.