Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán cực trị số phức bằng phương pháp hình học giải tích - Nguyễn Hữu Tình

Tài liệu gồm 26 trang được biên soạn bởi thầy Nguyễn Hữu Tình (giáo viên trường THPT chuyên Võ Nguyên Giáp – Quảng Bình) hướng dẫn giải bài toán cực trị số phức bằng phương pháp hình học giải tích, đây là lớp các bài toán vận dụng cao số phức và thường xuất hiện trong đề thi THPT Quốc gia 2018. Trong chương trình Toán THPT, phần Đại số mà cụ thể là phần Số học, ở chương trình lớp 12, học sinh được hoàn thiện hiểu biết của mình về các tập hợp số thông qua việc cung cấp một tập hợp số, gọi là Số phức. Trong chương này, học sinh đã bước đầu làm quen với các phép toán cộng, trừ, nhân, chia, khai căn, lũy thừa; lấy môđun, … các số phức. Bằng cách đặt tương ứng mỗi số phức z = x + yi (x, y ∈ R) với mỗi điểm M(x;y) trên mặt phẳng tọa độ Oxy, ta thấy giữa Đại số và Hình học có mối liên hệ với nhau khá “gần gũi”. Hơn nữa, nhiều bài toán Đại số bên Số phức, khi chuyển sang Hình học, từ những con số khá trừu tượng, bài toán đã được minh họa một cách rất trực quan, sinh động và cũng giải được bằng Hình học với phương pháp rất đẹp. Đặc biệt, trong các kỳ thi Đại học, Cao đẳng và THPT Quốc gia những năm gần đây, việc sử dụng phương pháp Hình học để giải quyết các bài toán về Số phức là một trong những phương pháp khá hay và hiệu quả, đặc biệt là các bài toán về Cực trị trong số phức. Hơn nữa, với những bài toán Hình học theo phương pháp trắc nghiệm, nếu khi biểu diễn được trên giấy thì qua hình ảnh minh họa, ta có thể lựa chọn đáp án một cách dễ dàng. [ads] Tuy nhiên, trong thực tế giảng dạy, việc chuyển từ bài toán Đại số nói chung và Số phức nói riêng sang bài toán Hình học ở nhiều học sinh nói chung còn khá nhiều lúng túng, vì vậy việc giải các bài toán về Số phức gây ra khá nhiều khó khăn cho học sinh. Bài toán Cực trị Số phức thông thường thì có khá nhiều cách lựa chọn để giải như dùng Bất đẳng thức, dùng Khảo sát hàm số … Qua chuyên đề này, tôi muốn gợi ý cho học sinh một lối tư duy vận dụng linh hoạt các phương pháp chuyển đổi từ bài toán Đại số sang Hình học cho học sinh, giúp các em có cái nhìn cụ thể hơn về việc chuyển đổi đó và vận duy tư duy này cho những bài toán khác. Với mục tiêu đó, trong chuyên đề này, tôi chỉ tập trung giải quyết bài toán theo hướng Hình học. Không đặt nặng việc so sánh phương pháp nào nhanh hơn, tối ưu hơn phương pháp nào.

Nguồn: toanmath.com

Đọc Sách

Giải chi tiết 50 câu trắc nghiệm số phức chọn lọc trong các đề thi thử - Nguyễn Thế Duy
Tài liệu gồm 20 trang tuyển tập 45 câu hỏi trắc nghiệm và 5 câu ví dụ minh họa chuyên đề số phức. Các bài tập được chọn lọc trong các đề thi thử THPT Quốc gia 2017 môn Toán và được phân tích, giải chi tiết. Trích dẫn tài liệu : + Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M, M’. Số phức z.(4 + 3i) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N’. Biết rằng M, M’, N, N’ là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của |z + 4i – 5|. [ads] + Cho số phức z thỏa mãn |z| = √2/2 và điểm A trong hình vẽ bên là điểm biểu diễn của z. Biết rằng trong hình vẽ bên, điểm biểu diễn của số phức w= 1/iz là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn của số phức w là A. Điểm Q   B. Điểm M C. Điểm N   D. Điểm P + Trong các số phức z thỏa mãn |z – (2 + 4i)| = 2, gọi z1 và z2 là số phức có môđun lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức z1 và z2 bằng? A. 8i   B. 4 C. -8  D. 8
50 câu trắc nghiệm tổng ôn số phức có lời giải chi tiết - Lê Viết Nhơn
Tài liệu gồm 15 trang tuyển tập 50 câu hỏi trắc nghiệm tổng ôn chuyên đề số phức được trích từ các đề thi thử THPT Quốc gia năm 2017. Các câu hỏi được phân tích và giải chi tiết. Trích dẫn tài liệu : + Cho số phức z = 3 – 2i. Tìm phần thực và phần ảo của số phức z A. Phần thực bằng –3 và Phần ảo bằng –2i B. Phần thực bằng –3 và Phần ảo bằng –2 C. Phần thực bằng 3 và Phần ảo bằng 2i D. Phần thực bằng 3 và Phần ảo bằng 2 [ads] + Trên trường số phức C, cho phương trình az^2 + bz + c = 0 (a, b, c ∈ R, a ≠ 0). Chọn khẳng định sai: A. Phương trình luôn có nghiệm B. Tổng hai nghiệm bằng -b/a C. Tích hai nghiệm bằng c/a D. Δ = b^2 – 4ac thì phương trình vô nghiệm + Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức z = a + bi (a, b ∈ R, a.b ≠ 0). M’ là diểm biểu diễn cho số phức z‾. Mệnh đề nào sau đây đúng? A. M’ đối xứng với M qua Oy B. M’ đối xứng với M qua Ox C. M’ đối xứng với M qua O D. M’ đối xứng với M qua đường thẳng y = x
Tuyển tập một số bài toán trắc nghiệm số phức trong các đề thi thử - Trần Văn Tài
Tài liệu gồm 17 trang tuyển tập 118 bài tập trắc nghiệm số phức trong các đề thi thử THPT Quốc gia 2017 có đáp án. Các bài tập được phân thành các dạng: + Dạng 1. Tìm phần thực và phần ảo + Dạng 2. Tìm modun của số phức + Dạng 3. Tìm số phức z thỏa điều kiện cho trước + Dạng 4. Tập hợp điểm + Dạng 5. Giải phương trình [ads]
100 câu hỏi trắc nghiệm số phức tổng hợp - Lê Bá Bảo
Tài liệu gồm 12 trang tổng hợp 100 bài toán số phức, có đáp án, tài liệu được biên soạn phục vụ ôn tập kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Trong các kết luận sau, kết luận nào sai? A. Môđun của số phức z là một số thực B. Môđun của số phức z là một số phức C. Môđun của số phức z là một số thực dương D. Môđun của số phức z là một số thực không âm [ads] + Nếu acgumen của z bằng -π/2 + k2π (k ∈ Z) thì: A. Phần ảo của z là số dương và phần thực của z bằng 0 B. Phần ảo của z là số âm và phần thực của z bằng 0 C. Phần thực của z là số âm và phần ảo của z bằng 0 D. Phần thực và phần ảo của z đều là số âm + Khi số phức z ≠ 0 thay đổi tuỳ ý thì tập hợp các số z^2 + 1 là: A. Tập hợp các số thực lớn hơn 1 B. Tập hợp các số phức C. Tập hợp các số phức khác 1 D. Tập hợp các số phức khác 0 và -i