Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx + 3 – 2m (với m là tham số). 1. Tìm m để đường thẳng (d) đi qua điểm A(2;1). 2. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. Gọi x1, x2 lần lượt là hoành độ các điểm A, B. Tìm m để x1, x2 là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 14. + Lớp 9A giao cho An đi mua bánh và kẹo để tổ chức liên hoan. An mua tất cả 15 hộp bánh và 5 túi kẹo với số tiền phải trả là 850 nghìn đồng. Biết rằng, giá mỗi hộp bánh là như nhau, giá mỗi túi kẹo là như nhau và giá một hộp bánh hơn giá một túi kẹo là 10 nghìn đồng. Tính giá tiền để mua một hộp bánh và giá tiền để mua một túi kẹo. + Cho đường tròn tâm O có đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA và E là điểm thuộc đường tròn tâm O (E không trùng với A và B). Gọi Ax và By là các tiếp tuyến tại A và B của đường tròn (O) (Ax và By cùng thuộc một nửa mặt phẳng bờ AB có chứa điểm E). Qua điểm E kẻ đường thẳng d vuông góc với E cắt Ax và By lần lượt tại M và N. 1. Chứng minh tứ giác AMEI nội tiếp. 2. Chứng minh ENI = EBI và AE.IN = BE.IM. 3. Gọi P là giao điểm của AE và MI, Q là giao điểm của BE và NI. Chứng minh hai đường thẳng PQ và BN vuông góc với nhau. 4. Gọi F là điểm chính giữa của cung AB không chứa điểm E của đường tròn (O). Tính diện tích tam giác AMN theo R khi ba điểm E, I, F thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Bình; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (do sở Giáo dục và Đào tạo tỉnh Quảng Bình công bố); kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Tìm tất cả các số nguyên dương n sao cho hai số 2 n n 2 7 và 2 n n 2 12 đều là lập phương của hai số nguyên dương nào đó. + Cho tam giác nhọn ABC nội tiếp đường tròn O đường kính AE. Gọi D là một điểm bất kì trên cung BE không chứa điểm A (D khác B và E). Gọi H I K lần lượt là hình chiếu vuông góc của D lên các đường thẳng BC CA và AB. a) Chứng minh ba điểm H I K thẳng hàng. b) Chứng minh AC AB BC DI DK DH. c) Gọi P là trực tâm của ABC, chứng minh đường thẳng HK đi qua trung điểm của đoạn thẳng DP. + Trong mặt phẳng tọa độ Oxy, cho parabol 2 P y x và đường thẳng d y mx m 2 1 (với m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn 1 2 x x 3.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Thuận; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Ninh Thuận : + Trên một khúc sông xuôi dòng từ bến A đến bến B dài 80 km, một chiếc thuyền đi xuôi dòng từ bến A đến bến B rồi sau đó đi ngược dòng đến bến A mất tất cả 9 giờ. Biết rằng, thời gian chiếc thuyền ngược dòng trên khúc sông này nhiều hơn xuôi dòng 1 giờ. Tính vận tốc của dòng nước. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC. Chứng minh BAH OAC. + Cho tam giác nhọn ABC có trực tâm H và các đường cao AD, BE, CF. Gọi I và K lần lượt là hình chiếu vuông góc của H trên EF và ED. Hai đường thẳng IK và AD cắt nhau tại M. Hai đường thẳng FM và DE cắt nhau tại N. Gọi S là điểm đối xứng của B qua D. Chứng minh ba điểm A, N, S thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lào Cai : + Một người dự định đi xe đạp từ A đến B cách nhau 40km trong một thời gian nhất định. Sau khi đi được 20km người đó đã dừng lại nghỉ 20 phút. Do đó để đến B đúng thời gian dự định người đó phải tăng vận tốc thêm 3km/h. Tính vận tốc dự định của người đó. + Cho tam giác nhọn ABC không cân (AB < AC) có đường tròn ngoại tiếp (O; R) và đường tròn nội tiếp (I; r). Đường tròn (I; r) tiếp xúc với các cạnh BC CA AB lần lượt tại D, E, F. Kéo dài AI cắt BC tại M và cắt đường tròn (O;R) tại điểm thứ 2 là N (N khác A). Gọi Q là giao điểm của AI và FE. Nối AD cắt đường tròn (I; r) tại điểm thứ 2 là P (P khác D). Kéo dài DQ cắt đường tròn (I; r) tại điểm thứ 2 là T (T khác D). Chứng minh rằng. + Cho p là số nguyên tố sao cho tồn tại các số nguyên dương x y thỏa mãn 3 3 x y p xy 6 8. Tìm giá trị lớn nhất của p.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bảng chính thức do sở Giáo dục và Đào tạo thành phố Hải Phòng công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Cho hai phương trình (ẩn x; tham số a b). Tìm tất cả các cặp số thực (a;b) để mỗi phương trình trên đều có hai nghiệm phân biệt thỏa mãn 21 0 xxx, trong đó 0 x là nghiệm chung của hai phương trình và 1 2 x x, lần lượt là hai nghiệm còn lại của phương trình (1), phương trình (2). + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Gọi I là tâm đường tròn bàng tiếp trong góc BAC của tam giác ABC. Đường thẳng AI cắt BC tại D, cắt đường tròn (O) tại EE A. a) Chứng minh E là tâm đường tròn ngoại tiếp tam giác IBC. b) Kẻ IH vuông góc với BC tại H. Đường thẳng EH cắt đường tròn (O) tại F (F E). Chứng minh AF FI. c) Đường thẳng FD cắt đường tròn (O) tại MM F, đường thẳng IM cắt đường tròn (O) tại N (N M). Đường thẳng qua O song song với FI cắt AI tại J, đường thẳng qua J song song với AH cắt IH tại P. Chứng minh ba điểm NEP thẳng hàng. + Cho tập hợp X = {1;2;3;…;101}. Tìm số tự nhiên n (n ≥ 3) nhỏ nhất sao cho với mọi tập con A tùy ý gồm n phần tử của X đều tồn tại 3 phần tử đôi một phân biệt abc A thỏa mãn abc.