Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán (chuyên) năm 2020 2021 sở GD ĐT Điện Biên

Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2020 2021 sở GD ĐT Điện Biên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2020-2021 sở GD ĐT Điện Biên Đề tuyển sinh THPT môn Toán (chuyên) năm 2020-2021 sở GD ĐT Điện Biên Vào ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Điện Biên đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán (chuyên) cho năm học 2020-2021. Đề tuyển sinh này bao gồm một trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Đề thi cung cấp đáp án và lời giải chi tiết cho học sinh. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Một con Robot được thiết kế có thể đi thẳng, quay một góc 90 độ sang phải hoặc sang trái. Robot bắt đầu từ vị trí A đi thẳng 2m, sau đó quay sang trái và đi thẳng 3m, sau đó quay sang phải và đi thẳng 5m đến vị trí B. Yêu cầu tính khoảng cách giữa điểm đích B và vị trí xuất phát của Robot. 2. Cho phương trình: x^2 - 5mx - 4m = 0 (với m là tham số). a) Tìm các giá trị của m để phương trình có nghiệm kép và tìm nghiệm đó. b) Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì biểu thức x1^2 + 5mx2 + m^2 + 14m + 1 luôn lớn hơn 0. 3. Cho tam giác nhọn ABC nội tiếp đường tròn (O). Đường cao AD, BE cắt nhau tại H. Kéo dài BE, AO cắt đường tròn (O) lần lượt tại F và M. a) Chứng minh tam giác HAF là tam giác cân. b) Chứng minh ba điểm H, I, M thẳng hàng và AH bằng gấp đôi đoạn thẳng OI. c) Xác định vị trí của điểm A trên đường tròn (O) sao cho tích DH và DA đạt giá trị lớn nhất. Đây là một đề tuyển sinh có cấu trúc phức tạp, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của thí sinh. Các bài toán đều chứa những yếu tố thú vị và hấp dẫn, khám phá sự sáng tạo và kiến thức toán học của học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Bình Dương năm học 2017-2018 Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Bình Dương năm học 2017-2018 Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của sở GD và ĐT Bình Dương bao gồm 5 bài toán tự luận, có lời giải chi tiết. Trong đó có một số bài toán thú vị như sau: Bài toán 1: Hai đội công nhân đắp đê ngăn triều cường. Nếu hai đội làm cùng một lúc, họ có thể hoàn thành công việc trong 6 ngày. Nếu làm riêng, đội I hoàn thành công việc chậm hơn đội II là 9 ngày. Hỏi nếu làm riêng, mỗi đội sẽ đắp xong đê trong bao nhiêu ngày? Bài toán 2: Ta có giác AMB cân tại M, nội tiếp trong đường tròn (O; R). Kẻ MH vuông góc với AB (H thuộc AB), MH cắt đường tròn tại N. Biết MA = 10cm, AB = 12cm. Hãy tính MH và bán kính R của đường tròn. Trên tia đối tia BA, lấy điểm C. MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh tứ giác MDEH nội tiếp và chứng minh các hệ thức: NB^2 = NE.ND và AC.BE = BC.AE. Cuối cùng, chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE. Đề thi mang đến những bài toán thú vị, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Hãy cùng nhau khám phá và giải quyết những thách thức trong đề thi này!
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán tại sở GD và ĐT Vĩnh Phúc bao gồm tổng cộng 8 câu hỏi, bao gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận. Đề thi được thiết kế với đáp án và lời giải chi tiết, giúp học sinh dễ dàng kiểm tra và nắm vững kiến thức Toán cần thiết cho kỳ thi tuyển sinh.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định bao gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, với đáp án và lời giải chi tiết. Một số bài toán trong đề: 1. Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C). Hãy chứng minh AM.AB = AN.AC và AN.AC = MN^2. 2. Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Hãy chứng minh rằng IO vuông góc với đường thẳng MN. 3. Chứng minh rằng 4(EN^2 + FM^2) = BC^2 + 6AH^2. 4. Cho tam giác ABC vuông tại A, đường cao AH biết BH = 4cm và CH = 16cm. Độ dài đường cao AH bằng bao nhiêu? 5. Cho hình nón có bán kính bằng 3cm, chiều cao bằng 4cm. Diện tích xung quanh của hình nón đã cho bằng bao nhiêu?
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Hải Dương năm học 2017-2018 Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Hải Dương năm học 2017-2018 Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Hải Dương bao gồm 5 bài toán tự luận, được kèm theo lời giải chi tiết. Dưới đây là mô tả một số bài toán trong đề: 1. Trong tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, sau khi cải tiến kỹ thuật, tổ I vượt mức 10% và tổ II vượt mức 12% so với tháng đầu, tổng sản lượng đạt 1000 chi tiết máy. Hãy tính số chi tiết mỗi tổ sản xuất trong tháng đầu. 2. Cho đường tròn tâm O, bán kính R. Từ một điểm M ngoài đường tròn, kẻ hai tiếp tuyến MA và MB (A, B là tiếp điểm). Kế tiếp, qua A kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB. Phân tích và giải quyết các yêu cầu sau: 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh: \(MN^2 = NF \times NA\) và \(MN = NH\). 3) Chứng minh: \(\frac{HB^2}{HF^2} - \frac{EF}{MF} = 1\). Mỗi bài toán đều đòi hỏi sự logic, kiến thức và kỹ năng phân tích từ học sinh để có thể giải quyết. Đề thi này không chỉ đánh giá kiến thức mà còn khuyến khích học sinh tư duy sáng tạo và khám phá trong quá trình giải quyết bài toán.