Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết

Tài liệu gồm 183 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án và lời giải chi tiết, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8 chương 3: Phương trình bậc nhất một ẩn. Trích dẫn tài liệu tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết: + Hai cây cọ mọc đối diện nhau ở hai bên bờ sông, cách nhau 50 thước, một cây cao 30 thước, một cây cao 20 thước. trên ngọn của mỗi cây có một con chim đang đậu. Bỗng nhiên cả hai con chim đều nhìn thấy một con cá bơi trên mặt nước giữa hai cây, chúng bổ nhào xuống con cá cùng một lúc với vận tốc như nhau và cùng đến đích một lúc. Tính khoảng cách từ gốc cây cao hơn đến con cá. + Tiểu sử của nhà toán học cố đại nổi tiếng Diophante (Đi – ô – phăng) được tóm tắt trên bia mộ của ông như sau: Hỡi người qua đường! Đây là nơi chôn cất di hài của Diophante, người mà một phần sáu cuộc đời là tuổi niên thiếu huy hoàng; một phần mười hai cuộc đời nữa trôi qua, trên cằm đã mọc râu lún phún. Diophante lấy vợ, một phần bảy cuộc đời trong cảnh vợ chồng hiếm hoi. Năm năm trôi qua, ông sung sướng khi có cậu con trai đầu lòng khôi ngô. Nhưng cậu ta chỉ sống được bằng nửa cuộc đời đẹp đẽ của cha. Rút cục thì với nỗi buồn thương sâu sắc, ông chỉ sống thêm được 4 năm nữa từ sau khi cậu ta lìa đời”. Tính tuổi thọ của Diophante. + Một người dự định đi từ A đến B trong một thời gian quy định với vận tốc 10km/h. Sau khi đi được nửa quãng đường người đó nghỉ 30 phút nên để đến B đúng dự định người đó tăng vận tốc lên 15km/h. Tính quãng đường AB.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập tam giác đồng dạng
Tài liệu gồm 48 trang, tóm tắt lý thuyết, các dạng toán và bài tập tam giác đồng dạng, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Hình học chương 3. Bài 1. Định lí Ta-lét trong tam giác. + Dạng 1. Tính toán, chứng minh về tỉ số của hai đoạn thẳng và đoạn thẳng tỉ lệ. + Dạng 2. Sử dụng định lí Ta-lét để tính độ dài đoạn thẳng. + Dạng 3. Sử dụng định lí Ta-lét để chứng minh các hệ thức. Bài 2. Định lí đảo và hệ quả của định lí Ta-lét. + Dạng 1. Sử dụng hệ quả của định lí Ta-lét để tính độ dài đoạn thẳng. + Dạng 2. Sử dụng hệ quả của định lí Ta-lét để chứng minh các hệ thức. + Dạng 3. Sử dụng định lí Ta-lét đảo để chứng minh hai đường thẳng song song. + Dạng 4. Phối hợp định lí Ta-lét thuận và đảo. + Dạng 5. Áp dụng vào toán dựng hình. Trong bốn đoạn thẳng tỉ lệ, dựng đoạn thẳng thứ tư khi biết độ dài ba đoạn kia. Bài 3. Tính chất đường phân giác của tam giác. + Dạng 1. Vận dụng tính chất đường phân giác của tam giác để tính độ dài đoạn thẳng. + Dạng 2. Vận dụng tính chất đường phân giác của tam giác để tính tỉ số độ dài hai đoạn thẳng. + Dạng 3. Đường phân giác ngoài của tam giác. Bài 4. Khái niệm hai tam giác đồng dạng. + Dạng 1. Vẽ tam giác đồng dạng với một tam giác cho trước. + Dạng 2. Tính chất hai tam giác đồng dạng. + Dạng 3. Chứng minh hai tam giác đồng dạng. Bài 5. Trường hợp đồng dạng thứ nhất. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ nhất. + Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để chứng minh các góc bằng nhau. Bài 6. Trường hợp đồng dạng thứ hai. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ hai để tính độ dài đoạn thẳng, chứng minh hai góc bằng nhau. + Dạng 2. Sử dụng các tam giác đồng dạng để dựng hình. Bài 7. Trường hợp đồng dạng thứ ba. + Dạng 1. Nhận biết hai tam giác đồng dạng theo trường hợp thứ ba để tính đồ dài hai đoạn thẳng. + Dạng 2. Nhận biết hai tam giác vuông đồng dạng theo trường hợp thứ ba. + Dạng 3. Sử dụng tam giác đồng dạng để dựng hình. Bài 8. Các trường hợp đồng dạng của tam giác vuông. + Dạng 1. Các trường hợp đồng dạng của tam giác vuông suy từ các trường hợp đồng dạng của tam giác. + Dạng 2. Trường hợp đồng dạng cạnh huyền – cạnh góc vuông. + Dạng 3. Tỉ số hai đường cao của hai tam giác đồng dạng. Bài 9. Ứng dụng thực tế của tam giác đồng dạng. + Dạng 1. Đo gián tiếp chiều cao. + Dạng 2. Đo gián tiếp khoảng cách, bề dày. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn
Tài liệu gồm 37 trang, tóm tắt lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Đại số chương 4. Bài 1. Liên hệ giữa thứ tự và phép cộng. Bài 2. Liên hệ giữa thứ tự và phép nhân. + Dạng 1. Biểu thị thứ tự các số. + Dạng 2. So sánh hai phân số. + Dạng 3. Chứng minh bất đẳng thức. + Dạng 4. Sử dụng phương pháp làm trội để chứng minh bất đẳng thức. + Dạng 5. Áp dụng bất đẳng thức để tìm giá trị nhỏ nhất, giá trị lớn nhất. Bài 3. Bất phương trình một ẩn. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình không? + Dạng 2. Biểu diễn tập nghiệm bất phương trình. + Dạng 3. Lập bất phương trình. + Dạng 4. Chứng minh bất phương trình có nghiệm với mọi giá trị của ẩn số x. Bài 4. Bất phương trình bậc nhất một ẩn. + Dạng 1. Kiểm tra x = a có là nghiệm của bất phương trình không? + Dạng 2. Giải bất phương trình. + Dạng 3. Biểu diễn tập nghiệm trên trục số. + Dạng 4. Bất phương trình tương đương. + Dạng 5. Bất phương trình. Bài 5. Phương trình chứa dấu giá trị tuyệt đối. + Dạng 1. Phương trình chứa dấu giá trị tuyệt đối. + Dạng 2. Bất phương trình chứa dấu giá trị tuyệt đối. Ôn tập chương IV. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Tài liệu gồm 43 trang, tóm tắt lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Đại số chương 3. Bài 1. Mở đầu về phương trình. Bài 2. Phương trình bậc nhất một ẩn và cách giải. + Dạng 1. Xét xem x = a có là nghiệm của phương trình không? + Dạng 2. Xét hai phương trình có tương đương nhau không? + Dạng 3. Nhận dạng phương trình bậc nhất một ẩn số. + Dạng 4. Giải phương trình bậc nhất. Bài 3. Phương trình đưa được về dạng ax + b = 0. + Dạng 1. Tìm chỗ sai và sửa lại các bài giảng phương trình. + Dạng 2. Giải phương trình. + Dạng 3. Giải bài toán bằng cách lập phương trình. Bài 4. Phương trình tích. + Dạng 1. Phương trình dạng a(x).b(x) = 0. + Dạng 2. Phương trình đưa về dạng phương trình tích. Bài 5. Phương trình chứa ẩn ở mẫu. + Dạng 1. Tìm chỗ sai và sửa lại các bài giải phương trình. + Dạng 2. Giải phương trình có chứa ẩn ở mẫu. + Dạng 3. Xác định giá trị của a để biểu thức có giá trị bằng hằng số k cho trước. Bài 6 – Bài 7. Giải bài toán bằng cách lập phương trình. + Dạng 1. Toán về tỉ số và quan hệ giữa các số. + Dạng 2. Toán chuyển động. + Dạng 3. Toán về công việc. + Dạng 4. Toán làm chung công việc. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập ôn bổ sung.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Tài liệu gồm 33 trang, tóm tắt lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 2. Bài 1. Đa giác và đa giác đều. + Dạng 1. Nhận biết đa giác. + Dạng 2. Tính chất về góc của đa giác. + Dạng 3. Tính chất về số đường chéo của đa giác. + Dạng 4. Đa giác đều. Bài 2. Diện tích hình chữ nhật. + Dạng 1. Tính chất diện tích đa giác. + Dạng 2. Tính diện tích hình chữ nhật. + Dạng 3. Diện tích hình vuông. + Dạng 4. Diện tích tam giác vuông. Bài 3. Diện tích tam giác. + Dạng 1. Cắt và ghép hình. Giải thích công thức tính diện tích tam giác. + Dạng 2. Tính toán, chứng minh về diện tích tam giác. + Dạng 3. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. + Dạng 4. Sử dụng công thức diện tích để chứng minh các hệ thức. + Dạng 5. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. + Dạng 6. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 4. Diện tích hình thang. + Dạng 1. Tính diện tích hình thang. + Dạng 2. Tính diện tích hình bình hành. + Dạng 3. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 5. Diện tích hình thoi. + Dạng 1. Tính diện tích tứ giác có hai đường chéo vuông góc. + Dạng 2. Tính diện tích hình thoi. + Dạng 3. Tìm diện tích lớn nhất(nhỏ nhất) của một hình. Bài 6. Diện tích đa giác. + Dạng 1. Tính diện tích đa giác. + Dạng 2. Dựng tam giác có diện tích bằng diện tích của một đa giác.