Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình thoi

Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC Dạng 1. Chứng minh tứ giác là hình thoi. Phương pháp: Sử dụng các dấu hiệu nhận biết. + Tứ giác có bốn cạnh bằng nhau là hình thoi. + Hình bình hành có hai cạnh kề bằng nhau là hình thoi. + Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. + Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học. Phương pháp: Sử dụng tính chất và định nghĩa của hình thoi để giải toán. + Hình thoi là tứ giác có bốn cạnh bằng nhau. + Hình thoi có tất cả các tính chất của hình bình hành: Các cạnh đối song song và bằng nhau, các góc đối bằng nhau. Hai đường chéo cắt nhau tại trung điểm của mỗi đường. + Ngoài ra, trong hình thoi có: Hai đường chéo vuông góc với nhau. Hai đường chéo là các đường phân giác của các góc của hình thoi. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình thoi. Dạng 4. Tổng hợp. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1: Nhận biết tứ giác là hình thoi. Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. C. PHIẾU BÀI TỰ LUYỆN CB – NC Dạng 1: Chứng minh một tứ giác là hình thoi. Dạng 2: Vận dụng kiến thức hình thoi để chứng minh và giải toán.

Nguồn: toanmath.com

Đọc Sách

Các hằng đẳng thức đáng nhớ và ứng dụng
Nội dung Các hằng đẳng thức đáng nhớ và ứng dụng Bản PDF - Nội dung bài viết Tuyển tập hằng đẳng thức đáng nhớ và ứng dụng Tuyển tập hằng đẳng thức đáng nhớ và ứng dụng Tài liệu này gồm 59 trang, bao gồm các hằng đẳng thức đáng nhớ và cách áp dụng chúng trong giải các bài toán, giúp học sinh lớp 8 tham khảo khi học chương trình toán học. Những hằng đẳng thức trong tài liệu giúp học sinh hiểu rõ hơn về quan hệ giữa các phép tính và là cơ sở quan trọng để giải các bài toán phức tạp.
Chuyên đề diện tích xung quanh và thể tích của hình chóp đều
Nội dung Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Bản PDF - Nội dung bài viết Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Chuyên đề diện tích xung quanh và thể tích của hình chóp đều Chuyên đề này bao gồm 12 trang tài liệu, tập trung vào việc giải quyết các bài toán liên quan đến diện tích xung quanh và thể tích của hình chóp đều. Tài liệu cung cấp một tóm tắt về lý thuyết cơ bản cần nắm vững, các phân dạng toán học và hướng dẫn chi tiết cách giải các dạng bài tập khác nhau. Tài liệu này còn tuyển chọn các bài tập từ dễ đến khó, từ cơ bản đến nâng cao, giúp học sinh có cơ hội ôn luyện và thử thách kỹ năng giải toán của mình. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và hiểu rõ hơn về cách giải quyết vấn đề. Chuyên đề này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, chương 4 với các nội dung về hình lăng trụ đứng và hình chóp đều. Cụ thể, tài liệu bao gồm: A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC: Công thức tính diện tích và thể tích của hình chóp đều. Công thức tính diện tích và thể tích của hình chóp cụt đều. B. VÍ DỤ MINH HỌA: Phần này cung cấp các ví dụ minh họa để học sinh có thể áp dụng kiến thức lý thuyết vào thực hành. C. PHIẾU BÀI TỰ LUYỆN: Bài tập đại lượng hình học để học sinh tự rèn luyện kỹ năng tính toán. Bài tập chứng minh giúp học sinh phát triển khả năng suy luận và biện minh. Tóm lại, tài liệu này là công cụ hữu ích giúp học sinh nắm vững kiến thức về diện tích xung quanh và thể tích của hình chóp đều, từ đó cải thiện kỹ năng giải toán và chuẩn bị tốt cho các bài kiểm tra và bài thi sắp tới.
Chuyên đề hình chóp đều, hình chóp cụt đều
Nội dung Chuyên đề hình chóp đều, hình chóp cụt đều Bản PDF - Nội dung bài viết Chuyên đề hình chóp đều, hình chóp cụt đều Chuyên đề hình chóp đều, hình chóp cụt đều Tài liệu này bao gồm 11 trang, cung cấp tóm tắt về lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến chuyên đề hình chóp đều và hình chóp cụt đều. Nội dung tài liệu bao gồm tuyển chọn các bài tập từ dễ đến khó, kèm theo đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về chương trình Hình học 8 chương 4 về Hình lăng trụ đứng, hình chóp đều. Trong tài liệu này, học sinh sẽ được củng cố kiến thức về hình chóp, hình chóp đều và hình chóp cụt đều. Hình chóp được định nghĩa là hình có mặt đáy là một đa giác và các mặt bên là các tam giác có chung đỉnh. Hình chóp đều là hình chóp có đáy là một đa giác đều, và các mặt bên là các tam giác cân bằng nhau có chung đỉnh. Còn hình chóp cụt đều thì được tạo ra khi cắt một hình chóp đều bằng một mặt phẳng song song với đáy. Bên cạnh đó, tài liệu cung cấp phương pháp giải toán chi tiết, từ việc biến đổi công thức tính các đại lượng đến những bài toán tự luận. Cuối cùng, tài liệu còn đi kèm với phiếu bài tập tự luyện với các dạng toán như biến đổi công thức và bài toán tự luận.
Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng
Nội dung Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng Bản PDF - Nội dung bài viết Tài liệu hướng dẫn về diện tích và thể tích của hình lăng trụ đứng Tài liệu hướng dẫn về diện tích và thể tích của hình lăng trụ đứng Tài liệu này bao gồm 09 trang chứa thông tin chi tiết về việc tính diện tích xung quanh và thể tích của hình lăng trụ đứng. Nó tóm tắt lý thuyết về trọng tâm cần nắm vững, phân loại các dạng toán, và cung cấp hướng dẫn giải từ cơ bản đến nâng cao. Tài liệu cũng chứa các bài tập được lựa chọn kỹ lưỡng, kèm theo đáp án và lời giải chi tiết. Đây sẽ là công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 với các khái niệm về hình lăng trụ đứng và hình chóp đều.