Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường Lương Thế Vinh Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường Lương Thế Vinh Hà Nội Bản PDF Thứ … ngày … tháng 03 năm 2021, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 giai đoạn giữa học kì 2 năm học 2020 – 2021. Đề thi giữa học kỳ 2 Toán lớp 12 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa học kỳ 2 Toán lớp 12 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Cho hàm số y = f(x) là hàm số bậc bốn có đồ thị như hình bên. Biết diện tích hình phẳng giới hạn bởi đồ thị hai hàm số y = f(x) và y = f'(x) bằng 214/5. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành. + Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (−2; −1; 2) và B (5; −1; 1). Đường thẳng d0 là hình chiếu của đường thẳng AB lên mặt phẳng (P): x + 2y + z + 2 = 0 có một véc tơ chỉ phương u = (a; b; 2). Tính S = a + b. + Cho hai điểm A, B cố định. Tập hợp các điểm M thay đổi sao cho diện tích tam giác MAB không đổi là: A. Mặt nón tròn xoay B. Hai đường thẳng song song. C. Mặt trụ tròn xoay D. Mặt cầu.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giữa học kỳ 2 Toán lớp 12 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk; đề được biên soạn theo hình thức đề trắc nghiệm khách quan 100% với 32 câu hỏi và bài toán, thời gian làm bài 60 phút, đề thi có đáp án mã đề 001, 002, 003, 004. Trích dẫn đề thi giữa học kỳ 2 Toán lớp 12 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian với hệ tọa độ Oxyz cho tứ diện đều ABCD với điểm A(13;-8;10) và hình chiếu vuông góc của A lên mặt phẳng (BCD) là H(-3;0;2). Phương trình mặt cầu ngoại tiếp tứ diện ABCD là? + Trong không gian với hệ tọa độ Oxyz cho ba điểm A(2;0;0), B(0;4;0), C(0;0;6). Mặt cầu (S) là mặt cầu ngoại tiếp tứ diện ABCD. Phương trình mặt phẳng (P) tiếp xúc mặt cầu (S) tại điểm A là? + Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và B(-1;4;2). Gọi điểm C thuộc mặt phẳng (Oxy) sao cho ba điểm A, B, C thẳng hàng. Phương trình mặt phẳng trung trực đoạn AC là? File WORD (dành cho quý thầy, cô):
Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường THPT Sầm Sơn Thanh Hóa
Nội dung Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường THPT Sầm Sơn Thanh Hóa Bản PDF Vừa qua, trường THPT Sầm Sơn, thành phố Sầm Sơn, tỉnh Thanh Hóa tổ chức kỳ thi kiểm tra chất lượng giữa kỳ 2 môn Toán lớp 12 năm học 2020 – 2021. Đề thi giữa kỳ 2 Toán lớp 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa được biên soạn theo hình thức đề trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết VD – VDC. Trích dẫn đề thi giữa kỳ 2 Toán lớp 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa : + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT Sầm Sơn, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD, phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)? + Cho hình trụ có chiều cao bằng 6 cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A’B’ mà AB = A’B’ = 6cm, diện tích tứ giác ABB’A’ bằng 60cm2. Tính bán kính đáy của hình trụ. + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y + 2)2 + (z – 3)2 = 12 và mặt phẳng (P): 2x + 2y – z – 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q) là? File WORD (dành cho quý thầy, cô):
Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường THPT Cam Lộ Quảng Trị
Nội dung Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường THPT Cam Lộ Quảng Trị Bản PDF Đề giữa kỳ 2 Toán lớp 12 năm 2020 – 2021 trường THPT Cam Lộ – Quảng Trị gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài 90 phút, đề thi có đáp án mã đề 001. Nội dung câu hỏi đề giữa kỳ 2 Toán lớp 12 năm 2020 – 2021 trường THPT Cam Lộ – Quảng Trị: 1 Khái niệm nguyên hàm. 2 Công thức nguyên hàm cơ bản. 3 Tính chất nguyên hàm. 4 Nguyên hàm của hàm đa thức. 5 Nguyên hàm của hàm lượng giác. 6 Nguyên hàm của hàm mũ. 7 Nguyên hàm của hàm phân thức. 8 Phương pháp đổi biến số. 9 Phương pháp nguyên hàm từng phần. 10 Bài nguyên hàm VDC. 11 Định nghĩa tích phân. 12 Tính chất tích phân. 13 Công thức bắc cầu. 14 Tích phân hàm đa thức. 15 Tích phân hàm lượng giác. 16 Tích phân hàm chứa căn. 17 Phương pháp đổi biến số. 18 Tính tích phân bằng phương pháp từng phần. 19 Bài toán tích phân VDC, ví dụ: tích phân hàm ẩn. 20 Lý thuyết ƯDTP tính diện tích hình phẳng. 21 Lý thuyết ƯDTP tính diện thể tích khối tròn xoay. 22 Nêu công thức tính diện tích hình phẳng khi cho trước hình ảnh đồ thị hàm f(x) trên đoạn [a,b]. 23 Tính diện tích hình phẳng giới hạn bởi đồ thị y = f(x), y = 0, x = a, x = b. 24 Tính diện tích hình phẳng giới hạn bởi đồ thị y = f(x), y = g(x), x = a, x = b. 25 Tính thể tích khối tròn xoay giới hạn bởi đồ thị y = f(x), y = 0, x = a, x = b. 26 Tính diện tích hình phẳng giới hạn bởi đồ thị y = f(x), y = g(x). 27 Bài toán VDC, ví dụ: bài toán thực tế tính thể tích của chiếc trống trường. 28 Định nghĩa số phức. 29 Phần ảo số phức. 30 Phần thực số phức. 31 Số phức liên hợp. 32 Điểm biểu diễn số phức. 33 Hai số phức bằng nhau. 34 Tìm tập hợp điểm biểu diễn số phức. 35 Bài toán số phức VDC, ví dụ: bài toán cực trị liên quan đến quỹ tích tập hợp điểm biễu diễn số phức. 36 Tính tọa độ vecto theo định nghĩa. 37 Tính tổng, hiệu của các vecto. 38 Tính độ dài của vecto. 39 Tọa độ vecto tạo bởi hai điểm M, N. 40 Tìm tham số m để ba điểm A, B, C thẳng hàng. 41 Viết phương trình mặt cầu khi biết đường kính AB. 42 Viết phương trình mặt cầu đi qua 4 điểm A, B, C, D. 43 Bài toán VDC, ví dụ: Tìm tâm của đường tròn ngoại tiếp tam giác (thường) ABC. 44 Tìm VTPT của mặt phẳng. 45 Tìm điểm thuộc mặt phẳng. 46 Viết phương trình mặt phẳng đi qua điểm M và có VTPT cho trước. 47 Phương trình đoạn chắn. 48 Viết phương trình mặt phẳng đi qua 3 điểm A, B, C. 49 Tìm tọa độ hình chiếu vuông góc của M lên một trong ba mặt phẳng tọa độ. 50 Viết phương trình mp qua điểm M và vuông góc với hai mp(P) và mp(Q). File WORD (dành cho quý thầy, cô):
Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường Phan Đình Phùng Hà Nội
Nội dung Đề thi giữa học kì 2 (HK2) lớp 12 môn Toán năm 2020 2021 trường Phan Đình Phùng Hà Nội Bản PDF Ngày … tháng 03 năm 2021, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 12 giai đoạn giữa học kì 2 năm học 2020 – 2021. Đề thi giữa kì 2 Toán lớp 12 năm 2020 – 2021 trường Phan Đình Phùng – Hà Nội mã đề 147 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 40 câu hỏi và bài toán, thời gian làm bài 60 phút (không kể thời gian giao đề), đề thi có đáp án mã đề 147, 257, 329, 490. Trích dẫn đề thi giữa kì 2 Toán lớp 12 năm 2020 – 2021 trường Phan Đình Phùng – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x – y + z – 1 = 0. Gọi (β) là mặt phẳng đi qua giao tuyến của mặt phẳng (α) và mặt phẳng (Oxy), đồng thời (β) tạo với ba mặt phẳng tọa độ một tứ diện có thể tích bằng 1/60. Biết mặt phẳng (β) có phương trình dạng: ax + by + cz – 1 = 0. Giá trị biểu thức a2 + b2 + c2 bằng? + Trong không gian với hệ tọa độ Oxyz, cho điểm E(1;1;0), F(0;0;m). Gọi H là chân đường cao hạ từ O của tam giác OEF (O là gốc tọa độ). Tất cả các giá trị m để OH = HE là? + Cho các hàm số f(x), g(x) liên tục trên R và k là hằng số. Xét các mệnh đề sau. Số mệnh đề đúng là?