Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 1 Toán 8 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra luyện kỹ năng làm bài thi kết hợp kiểm tra giữa học kỳ 1 môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; đề thi gồm 03 trang, cấu trúc 50% trắc nghiệm (20 câu) + 50% tự luận (04 câu), thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2023 – 2024 phòng GD&ĐT Yên Thế – Bắc Giang : + Cho ∆ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM ⊥ AB (M ∈ AB), kẻ HN ⊥ AC (N ∈ AC). Gọi I là trung điểm của HC, lấy K trên tia AI sao cho I là trung điểm của AK. a) Chứng minh: AC // HK. b) Chứng minh: tứ giác MNCK là hình thang cân. + Chọn phương án sai trong các phương án sau: A. Tứ giác có các cạnh đối song song là hình bình hành B. Tứ giác có các cạnh đối bằng nhau là hình bình hành C. Tứ giác có hai góc đối bằng nhau là hình bình hành D. Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành. + Khẳng định nào sau đây là sai? A. Hình thang cân có hai đường chéo bằng nhau. B. Hình thang có hai cạnh bên bằng nhau là hình thang cân. C. Hình thang cân có hai cạnh bên bằng nhau. D. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kỳ 1 Toán 8 năm 2021 - 2022 sở GDĐT Bắc Ninh
Đề thi giữa học kỳ 1 Toán 8 năm 2021 – 2022 sở GD&ĐT Bắc Ninh gồm 01 trang với 08 câu trắc nghiệm (03 điểm) và 03 câu tự luận (07 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kỳ 1 Toán 8 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Khẳng định nào sau đây đúng? A. Tứ giác có hai cạnh đối bằng nhau là hình bình hành. B. Tứ giác có hai cặp cạnh đối song song là hình bình hành. C. Hình thang có hai cạnh bằng nhau là hình thang cân. D. Hình thang có hai góc bằng nhau là hình thang cân. + Cho hình bình hành ABCD. Gọi I K theo thứ tự là trung điểm của CD AB. Đường chéo BD cắt AI CK theo thứ tự tại M và N. Chứng minh rằng: a) Tứ giác AKCI là hình bình hành. b) DM MN NB. c) Các đoạn thẳng AC BD IK cùng đi qua một điểm. + Phân tích đa thức 3 x x 9 thành nhân tử ta được?
Đề thi giữa học kì 1 Toán 8 năm 2021 - 2022 trường THCS Đại Kim - Hà Nội
Đề thi giữa học kì 1 Toán 8 năm 2021 – 2022 trường THCS Đại Kim – Hà Nội gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 07 tháng 11 năm 2021.
Đề thi giữa học kì 1 Toán 8 năm 2021 - 2022 trường THCS Trạm Trôi - Hà Nội
Đề thi giữa học kì 1 Toán 8 năm 2021 – 2022 trường THCS Trạm Trôi – Hà Nội được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 12 câu, chiếm 03 điểm, phần tự luận gồm 05 câu, chiếm 07 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2021 – 2022 trường THCS Trạm Trôi – Hà Nội : + Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD. a. Chứng minh tứ giác AECF là hình bình hành. b. Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC. c. Chứng minh tứ giác CIDB là hình thang cân. + Trong các khẳng định sau đây, khẳng định nào SAI? A. Trung điểm của một đoạn thẳng là tâm đối xứng của đoạn thẳng đó. B. Giao điểm hai đường chéo của một hình bình hành là tâm đối xứng của hình bình hành đó. C. Trọng tâm của một tam giác là tâm đối xứng của tam giác đó. D. Tâm của một đường tròn là tâm đối xứng của đường tròn đó. + Cho đoạn thẳng AB có độ dài 5cm và đường thẳng d, đoạn thẳng A’B’ đối xứng với AB qua d. Khi đó độ dài của A’B’ là: A. 5cm B. 2,5cm C. 10cm D. 15cm.
Đề thi giữa học kì 1 Toán 8 năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội
Đề thi giữa học kì 1 Toán 8 năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội : + Tìm m để đa thức A(x) = 2×3 + x2 – 4x + m chia hết cho đa thức P(x) = 2x – 1. + Yêu cầu: Học sinh chỉ vẽ hình, không phải viết giả thiết, kết luận: Cho tam giác ABC vuông tại A. Đường trung tuyến AN. Điểm M là hình chiếu vuông góc của N trên AB. Vẽ điểm Q đối xứng với điểm N qua AC. Gọi giao điểm của NQ và AC là P. 1) Các tứ giác AMNP, ANCQ là hình gì? Vì sao? 2) AN cắt MP tại điểm E. Chứng minh: Ba điểm B, E, Q thẳng hàng. 3) Tam giác ABC có thêm điều kiện gì để tứ giác ABCQ là hình thang cân. + Tìm giá trị nhỏ nhất của biểu thức P = (2×2 – 8x + 10)/(x2 – 4x + 5,5).