Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 phòng GDĐT Đống Đa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ô tô vận tải cần chở một số thùng hàng từ Hà Nội đến Hoa Lư – Ninh Bình dài 120 km trong thời gian dự tính. Vì khâu xếp hàng lên xe mất nhiều thời gian nên ô tô xuất phát chậm hơn 36 phút. Do đó, để đến nơi đúng thời gian dự định, xe phải tăng vận tốc thêm 10 km/h. Tính vận tốc dự tính ban đầu của xe? + Nhà trường phát động phong trào “Tái chế rác thải – Bảo vệ hành tinh xanh”. Bạn An muốn sử dụng vỏ lon nước ngọt dạng hình trụ để làm hộp cắm bút. An dùng giấy màu bọc quanh lon để trang trí cho sản phẩm của mình. Tính diện tích phần giấy An dùng để bọc vừa đủ kín phần thân lon? Biết đường kính đáy lon là 6,5 cm và chiều cao của lon là 12 cm. (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R), tia phân giác của góc BAC cắt BC tại D, cắt (O) tại E, vẽ DK vuông góc với AB tại K và DM vuông góc với AC tại M. 1) Chứng minh tứ giác AKDM nội tiếp. 2) Chứng minh AD.AE = AB.AC 3) Chứng minh AE KM. Tính tỉ số diện tích tam giác ABC và diện tích tứ giác AKEM.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đông Anh, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 phòng GD&ĐT Đông Anh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm một công việc thì sau 18 giờ sẽ xong. Nếu người thứ nhất làm một mình trong 6 giờ, sau đó một mình người thứ hai làm trong 8 giờ thì cả hai người làm được 2/5 công việc. Hỏi nếu mỗi người làm một mình thì sau bao lâu xong công việc? + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = 20(x + 1) − 2m – 19 và parabol (P): y = x². a) Tìm tọa độ giao điểm của (d) và (P) khi m = 10. b) Tìm m để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung. + Cho đường tròn (O) và đường thẳng d không đi qua tâm O cắt đường tròn tại hai điểm A và B. Gọi C là điểm thuộc đường thẳng d sao cho A nằm giữa B và C. Vẽ đường kính PQ vuông góc với dây AB tại D (P thuộc cung lớn AB). Tia CP cắt đường tròn (O) tại điểm thứ hai là I (I khác P), AB cắt IQ tại K. 1. Chứng minh tứ giác PDKI nội tiếp. 2. Chứng minh KB.IQ = BQ.BI. 3. Chứng minh IK là đường phân giác trong của tam giác AIB và AC/BC = AK/BK. 4. Cho ba điểm A, B, C cố định và đường tròn (O) thay đổi nhưng luôn đi qua A, B. Chứng minh đường thẳng IQ luôn đi qua một điểm cố định.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Thường Tín - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Thường Tín – Hà Nội : + Một khúc sông rộng 20m. Một chiếc thuyền qua sông bị dòng nước đẩy xiên nên phải chèo 26m mới sang được bờ bên kia. Hỏi dòng nước đã đẩy chiếc thuyền lệch đi một góc bao nhiêu? (Số đo góc làm tròn đến đơn vị độ, hai bờ sông song song). + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chu vi là 90m. Nếu giảm chiều rộng đi 4m và giảm chiều dài đi 20% thì chu vi mảnh đất giảm đi 18m. Tính chiều dài và chiều rộng của mảnh đất hình chữ nhật ban đầu? + Cho tam giác ABC nội tiếp đường tròn tâm O, đường cao AI, BN cắt nhau tại H, CH cắt AB tại M. 1. Chứng minh: Tứ giác AMHN nội tiếp. 2. Chứng minh: H cách đều NM, NI. 3. Cho góc ABC = 45°, SABC = 100cm2. Tính diện tích tam giác ANM.
Đề khảo sát đợt 2 Toán 9 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đợt 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm mã đề 01 và mã đề 02. Trích dẫn Đề khảo sát đợt 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Cho hàm số bậc nhất y ax b. Tìm a và b biết rằng đồ thị hàm số đi qua điểm M 1 1 và cắt trục hoành tại điểm có hoành độ là 3. Cho đường thẳng (d): y xm3. Tìm m để (d) cắt đường thẳng y 2x 1 tại điểm có tung độ bằng 1. + Tại cửa hàng điện máy, giá niêm yết một chiếc máy vi tính và một máy in có tổng số tiền là 21,5 triệu đồng. Trong đợt khuyến mãi đầu xuân 2023, mỗi máy vi tính giảm giá 40% và mỗi máy in giảm giá 30%. Bác Quang đã mua trong đợt giảm giá này một máy vi tính và một máy in với tổng số tiền là 13,5 triệu đồng. Hỏi mỗi máy vi tính, máy in nói trên khi chưa giảm giá là bao nhiêu? + Cho nửa đường tròn (O) đường kính AB và dây AC (C khác A và B). Gọi N là điểm chính giữa cung AC; I là giao điểm của bán kính ON với dây AC. a. Chứng minh ∆ANC cân. b. Vẽ đường thẳng qua C song song với BN, nó cắt đường thẳng ON tại D; E là giao điểm của AN và CD, EI cắt AB tại Q. Chứng minh AQ.IC = QE.NI.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 03 năm 2023; đề thi có đáp án và lời giải chi tiết mã đề 01 và mã đề 02. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho hàm số y = 2mx + 3m − 2 với m là tham số. Biết đồ thị của hàm số đi qua điểm A(1;3), hỏi hàm số đã cho là đồng biến hay nghịch biến? Cho phương trình bậc hai x2 − 2(m − 1)x + m2 – 2 = 0 với tham số m. Tìm tất cả giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn (x1 – x2)2 = 3 − x1x2. + Để tiêm vắc xin phòng bệnh Covid-19 cho học sinh trường THCS X, bệnh viện đã cử hai đội tiêm vắc xin lưu động. Nếu cả hai đội cùng tiến hành tiêm cho các em học sinh thì sau 2 giờ 24 phút là xong công việc. Nếu đội I tiến hành tiêm trong 2 giờ rồi nghỉ, sau đó đội II tiến hành tiêm trong 1,5 giờ, thì chỉ tiêm được 75% số học sinh trong trường. Hỏi nếu mỗi đội tiêm riêng thì trong mấy giờ mới tiêm xong. + Cho tam giác nhọn ABC (AB > AC), các đường cao AE, BF, CK và H là trực tâm. a) Chứng minh các tứ giác BCFK, BEHK nội tiếp được trong đường tròn. b) Chứng minh EH là đường phân giác trong của góc KEF. Gọi N là giao điểm của AE và KF, qua N kẻ đường thẳng song song với KE cắt EF tại M. Chứng minh: 1/MN = 1/EF + 1/EK.