Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển tư duy giải toán hình học tọa độ phẳng Oxy - Hứa Lâm Phong

Sách gồm 579 trang trình bày đầy đủ và chi tiết các vấn đề về hình học tọa độ trong mặt phẳng. Các bài toán trong sách được chọn lọc, phân dạng, phân tích và giải quyết một cách chi tiết theo nhiều hướng. Sách do thầy Hứa Lâm Phong biên soạn. Chương 1. Tóm tắt lý thuyết và các vấn đề liên quan đến phương pháp tọa độ trong mặt phẳng Oxy Chủ đề 1.1. Véctơ và các phép toán Chủ đề 1.2. Hệ tọa độ – tọa độ véctơ – tọa độ điểm Chủ đề 1.3. Phương trình đường thẳng Chủ đề 1.4. Khoảng cách từ một điểm đến một đường thẳng. Góc giữa hai đường thẳng Chủ đề 1.5. Phương trình đường tròn Chủ đề 1.6. Phương trình đường elip Chủ đề 1.7. Phương trình đường hypebol và parabol Chủ đề 1.8. Phép biến hình cơ bản trong mặt phẳng Chủ đề 1.9. Các định lý – bổ đề – tính chất – bài toán tiêu biểu trong hình học phẳng [ads] Chương 2. Các phương pháp tiếp cận và giải nhanh một bài toán hình học trong mặt phẳng Oxy Chủ đề 2.1. Các bài toán liên quan đến tìm tọa độ điểm Chủ đề 2.2. Các bài toán liên quan đến viết phương trình đường thẳng Chủ đề 2.3. Các bài toán liên quan đến viết phương trình đường tròn Chủ đề 2.4. Các bài toán liên quan đến các đường conic Chủ đề 2.5. Các bài toán liên quan đến max – min cực trị hình học trong mặt phẳng Oxy Chương 3. Ứng dụng hình học tọa độ oxy vào việ c giải các bài toán hình học thuần túy Chủ đề 3.1. Các nguyên tắc cần lưu ý khi giải bài toán hình học phẳng bằng công cụ tọa độ Chủ đề 3.2. Phương pháp giải các bài toán hình học thuần túy bằng công cụ tọa độ Chủ đề 3.3. Các ví dụ minh họa và so sánh giữa phương pháp tọa độ và cách giải hình học thuần túy Chủ đề 3.4. Ứng dụng hệ trục tọa độ vào việc giải các bài toán hình học phẳng Chủ đề 3.5. Ứng dụng hệ trục tọa độ vào việc chứng minh các tính chất hình học trong bài toán hình học phẳng Oxy Chương 4. Phân tích & hướng dẫn giải chi tiết các bài toán hình học trong mặt phẳng Oxy đã thi Đại học – Cao đẳng

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 100 bài toán hình học giải tích phẳng Oxy - Nguyễn Minh Tiến
Tài liệu gồm 78 trang tuyển chọn 100 bài toán hình học giải tích phẳng Oxy có lời giải chi tiết do tác giả Nguyễn Minh Tiến sưu tầm và biên soạn. Trích dẫn tài liệu : + Trong hệ trục tọa độ Oxy cho tam giác ABC biết đường cao kẻ từ A, trung tuyến kẻ từ B và phân giác kẻ từ C có phương trình lần lượt là (d1): 3x − 4y + 27 = 0; (d2): 4x + 5y − 3 = 0; (d3): x + 2y − 5 = 0. Xác định tâm và bán kính đường tròn ngoại tiếp tam giác ABC. [ads] + Trong hệ trục tọa độ Oxy cho tam giác ABC có điểm B (1/2; 1). Đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA và AB tại D, E và F. Biết điểm D (3; 1) và phương trình đường thẳng EF có phương trình là (d) : y − 3 = 0. Tìm tọa độ đỉnh A biết đỉnh A có tung độ không âm. + Trong mặt phẳng với hệ trục tọa độ Oxy cho hình vuông ABCD có điểm B thuộc đường thẳng (d): 5x + 3y − 10 = 0. Gọi M là điểm đối xứng với D qua C, H và K (1; 1) lần lượt là hình chiếu của D, C lên AM. Xác định tọa độ các đỉnh của hình vuông ABCD biết phương trình đường thẳng đi qua H và tâm I của hình vuông là (d1) : 3x + y + 1 = 0.
Dự đoán và chứng minh tính chất hình học Oxy - Nguyễn Thanh Tùng
Tài liệu Dự đoán và chứng minh tính chất hình học Oxy của thầy giáo Nguyễn Thanh Tùng gồm 63 trang với các bài toán Oxy được phân loại theo các chủ đề: Hình vuông, hình chủ nhật, tam giác, tứ giác và đường tròn. Mỗi bài toán đều có hình vẽ rõ ràng giúp dễ dàng nhận ra tính chất, từ đó chứng minh tính chất chi tiết và hoàn thiện lời giải của bài toán. [ads]
30 tính chất hình học Oxy điển hình - Trần Văn Tài - Hứa Lâm Phong
Tài liệu Soi kính lúp hình học phẳng Oxy được biên soạn bởi thầy Trần Văn Tài và thầy Hứa Lâm Phong giới thiệu 30 tính chất hình học phẳng thường dùng trong giải toán Oxy, chứng minh tính chất và áp dụng vào trong các bài toán cụ thể. Tài liệu gồm 3 phần: 1. Giới thiệu và chứng minh 30 tính chất hình phẳng thường gặp dùng để giải nhanh bài toán Oxy Để giúp bạn đọc rèn luyện thêm cho mình những kỹ năng trong quá trình chứng minh một số tính chất hình học, tác giả bổ sung thêm vào chuyên đề mục sau. Ngoài cách chứng minh đã nêu có thể có thêm những cách chứng minh khác nữa. Điều này tùy thuộc vào khả năng tư duy và lĩnh hội cũng như sở trường của mỗi người. Tựu trung lại thì hướng chứng minh vẫn xuất phát từ 4 con đường chính: [ads] + Một là, sử dụng các tính chất hình học thuần túy của THCS + Hai là, sử dụng phương pháp véctơ thuần túy (Hình học 10) + Ba là, sử dụng phương pháp tọa độ hóa kết hợp chuẩn hóa số liệu + Bốn là, sử dụng phương pháp tổng hợp (kết hợp các cách trên) 2. Phân dạng bài toán hình phẳng Oxy + Phần I. Các bài toán về tam giác + Phần II. Các bài toán về tứ giác + Phần III. Các bài toán về đường tròn + Phần phụ trợ tham khảo 3. Trích đề thi thử mới nhất 2016
Một số tính chất hay dùng trong hình học phẳng Oxy tập 2 - Võ Quang Mẫn
Tài liệu giới thiệu một số tính chất hay dùng trong hình học phẳng Oxy giúp giải nhanh các bài toán Oxy khó, tài liệu do thầy Võ Quang Mẫn biên soạn. Tài liệu bao gồm : I – TÍNH CHẤT KINH ĐIỂN CẦN NẮM VỮNG 1. Đường tròn Apolonius 2. Hàng điểm điều hòa 3. Phép nghịch đảo, cực và đối cực 4. Tứ giác nội tiếp có hai đường chéo vuông góc 5. Tứ giác ngoại tiếp [ads] 6. Hai đường tròn trực giao 7. Trực tâm, trung điểm và tính đối trung 8. Tâm nội tiếp của tam giác đường cao 9. Tập phân tích những bài toán có sự đối xứng, yếu tố trung tâm và mối liên hệ giữa chúng II – TÍNH CHẤT MỚI CÓ THỂ PHÙ HỢP VỚI XU HƯỚNG CỦA ĐỀ THI  III – TỔNG HỢP CÁC BÀI TRÊN NHÓM OXY Xem lại tập 1:  Vận dụng các tính chất hình học phẳng vào bài toán tọa độ Oxy – Võ Quang Mẫn (Tập 1 – phiên bản 2016)