Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh Toán 9 năm học 2019 - 2020 sở GDĐT Lâm Đồng

Thứ Sáu ngày 22 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán lớp 9 THCS năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lâm Đồng gồm có 01 trang với 12 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài 150 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một máy bay chuyển động thẳng đều theo phương nằm ngang với vận tốc 150 m/s. Ở vị trí A phi công nhìn địa điểm E ở mặt đất thẳng phía trước máy bay theo góc 58 độ so với phương thẳng đứng và sau đó 20 giây đến vị trí B lại nhìn thấy địa điểm E theo góc 28 độ (hình 1). Tính độ cao h của máy bay so với mặt đất. + Một tàu lửa dài 120 m chạy qua một đường hầm với vận tốc 40 km/h. Từ lúc đầu tàu chui vào đường hầm cho tới lúc toa cuối cùng ra khỏi hầm mất 10 phút 15 giây. Tính chiều dài của đường hầm. + Cho hình thoi ABCD có độ dài cạnh bằng 2 và hai đường chéo cắt nhau tại O. Gọi R1 và R2 lần lượt là bán kính các đường tròn ngoại tiếp các tam giác ADC và DBC. Chứng minh rằng: 1/R1^2 + 1/R2^2 = 1.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 09 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng, giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh). Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Rút gọn biểu thức A. b) Cho các số thực a, b, c thỏa mãn a2 + b2 = 2. Tính giá trị của biểu thức P. c) Phân tích đa thức x(x + 2)(x2 + 2x + 2) + 1 thành nhân tử. + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. + Các điểm E và F lần lượt là trung điểm của các cạnh AB, AD của hình bình hành ABCD. Các đoạn thẳng CE và BF cắt nhau tại K. Qua điểm D kẻ đường thẳng song song với CE cắt đường thẳng AB tại N. Tia BF cắt DN tại P. a) Chứng minh rằng BE = 1/2.EN và KP = 2BK. b) Chứng minh rằng KF/KP = 3/4. c) Lấy điểm M thuộc đoạn CE sao cho BM song song với KD. Chứng minh rằng diện tích tam giác KFD bằng diện tích tứ giác BKDM.