Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội

Chiều Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Đại học Sư phạm Hà Nội tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội mã đề 212 gồm có 06 trang, đề có dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 211, 212, 213, 214. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội : + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây, trong đó m thuộc R. Chọn khẳng định đúng: A. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m thuộc R\{2}. B. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m thuộc R. C. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m thuộc R. D. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m thuộc R. [ads] + Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = 1, AA’ = 5. Một mặt phẳng (P) cắt các cạnh AA’, BB’, CC lần lượt tại A1, B1, C1 sao cho AA1 = 1, BB1 = 2. Gọi V1 và V2 lần lượt là thể tích khối đa diện ABC.A1B1C1 và A’B’C’.A1B1C1. Giá trị lớn nhất của tích V1.V2 thuộc khoảng nào dưới đây? + Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện |z – 3| = 2 là: A. Đường tròn tâm I(3;0), bán kính R = 2. B. Đường thẳng x = 3. C. Đường thẳng y = 2. D. Đường tròn tâm I(2;0), bán kính R = 3.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra KSCL lần 2 Toán 12 năm 2018 - 2019 trường Thanh Thủy - Phú Thọ
Vừa qua, trường THPT Thanh Thủy – Phú Thọ tiếp tục tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán 12 lần thứ 2 năm học 2018 – 2019, nhằm giúp học sinh khối 12 của trường tiếp tục được rèn luyện để củng cố, nâng cao kiến thức, kỹ năng giải toán để hướng đến kỳ thi THPT Quốc gia 2019 môn Toán. Đề kiểm tra KSCL lần 2 Toán 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ có mã đề 156 gồm 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài. Trích dẫn đề kiểm tra KSCL lần 2 Toán 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ : + Anh Tuấn đi làm với mức lương khởi điểm là x (triệu đồng)/tháng, và số tiền lương này được nhận vào ngày đầu tháng. Vì làm việc chăm chỉ và có trách nhiệm nên sau 3 năm kể từ ngày đi làm, anh Tuấn được tăng lương thêm 10%. Mỗi tháng, anh ta giữ lại 20% số tiền lương để gửi tiết kiệm vào ngân hàng với kì hạn 1 tháng và lãi suất là 0,5%/tháng, theo hình thức lãi kép (tức là tiền lãi của tháng này được nhập vào vốn để tính lãi cho tháng tiếp theo). Sau 4 năm kể từ ngày đi làm, anh Tuấn nhận được số tiền cả gốc và lãi là 100 triệu đồng. Hỏi mức lương khởi điểm của người đó là bao nhiêu? [ads] + Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi vận động viên còn lại. Biết có ba vận động viên nữ và số ván các vận động viên nam chơi với nhau hơn số ván họ chơi với ba vận động viên nữ là 78. Tổng số ván cờ vua của giải đấu là? + Cho hàm số đa thức bậc ba y = f(x) có đồ thị đi qua các điểm A(2;3), B(3;8), C(4;15). Các đường thẳng AB, AC, BC lại cắt đồ thị tại lần lượt tại các điểm D, E, F (D khác A và B, E khác A và C, F khác B và C). Biết rằng tổng các hoành độ của D, E, F bằng 6. Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 là?
Đề kiểm tra khảo sát Toán 12 năm 2018 - 2019 trường Thuận Thành 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề kiểm tra khảo sát Toán 12 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh, đề thi có mã 210 được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, đề gồm 07 trang, học sinh làm bài trong 90 phút, kỳ thi nhằm giúp nhà trường và giáo viên bộ môn Toán kiểm tra, đánh giá chất lượng ôn tập của học sinh khối 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Trích dẫn đề kiểm tra khảo sát Toán 12 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh : + Bà Tư gửi tiết kiệm 75 triệu đồng vào ngân hàng theo kỳ hạn một quý (3 tháng) với lãi suất 1.77% một quý. Nếu bà không rút lãi ở tất cả các định kỳ thì sau 3 năm bà ấy nhận được số tiền cả vốn lẫn lãi là bao nhiêu (làm tròn tới hàng nghìn)? Biết rằng hết một kỳ hạn lãi sẽ được cộng vào vốn để tính lãi trong kỳ hạn tiếp theo. [ads] + Một khối đá có hình là một khối cầu có bán kính R, người thợ thợ thủ công mỹ nghệ cần cắt và gọt viên đá đó thành một viên đá cảnh có hình dạng là một khối trụ. Tính thể tích lớn nhất có thể của viên đá cảnh sau khi đã hoàn thiện. + Cho hàm số f(x) liên tục trên đoạn [-2;3] có đồ thị như hình vẽ dưới đây. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [-2;3]. Giá trị của 2m – 3M bằng?
Đề khảo sát Toán THPT Quốc gia 2019 lần 3 trường Thiệu Hóa - Thanh Hóa
giới thiệu đến bạn đọc đề khảo sát Toán THPT Quốc gia 2019 lần 3 trường Thiệu Hóa – Thanh Hóa, đề thi có mã đề 132 được biên soạn theo dạng trắc nghiệm với 50 câu, học sinh làm bài thi trong 90 phút, đề có cấu trúc tương tự với đề minh họa THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo công bố, đề thi có đáp án và lời giải chi tiết. Ma trận đề khảo sát Toán THPT Quốc gia 2019 lần 3 trường Thiệu Hóa – Thanh Hóa [ads] Trích dẫn đề khảo sát Toán THPT Quốc gia 2019 lần 3 trường Thiệu Hóa – Thanh Hóa : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD = 60 độ và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 độ. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ sau). Tính tỉ số V1/V2. + Trong mặt phẳng tọa độ Oxy, cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi M, N lần lượt là hình chiếu vuông góc của A trên các đường thẳng BC, BD và P là giao điểm của MN, AC. Biết đường thẳng AC có phương trình x – y – 1 = 0, M(0;4), N(2;2) và hoành độ điểm A nhỏ hơn 2. Tìm tọa độ các điểm P, A, B. + Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 300. Gọi A là biến cố “số được chọn không chia hết cho 3”. Tính xác suất P(A) của biến cố A.