Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề nhắc lại và bổ sung các khái niệm về hàm số

Tài liệu gồm 24 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề nhắc lại và bổ sung các khái niệm về hàm số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hàm số. a) Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số. b) Hàm số có thể cho bằng bảng hoặc công thức. c) Khi y là hàm số của x, ta có thể viết: y f x y gx. d) Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. 2. Giá trị của hàm số, điều kiện xác định của hàm số. – Giá trị của hàm số f x tại điểm 0 x kí hiệu là: y fx 0 0. – Điều kiện xác định của hàm số f x là tất cả các giá trị của x sao cho biểu thức f x có nghĩa. 3. Đồ thị của hàm số. – Đồ thị của hàm số y fx là tập hợp tất cả các điểm M xy trong mặt phẳng tọa độ Oxy sao cho x y thỏa mãn hệ thức: y fx. – Điểm Mx y 0 0 thuộc đồ thị hàm số y fx 0 0 ⇔ y fx. 4. Hàm số đồng biến, hàm số nghịch biến. Cho hàm số: y fx xác định với x R. – Nếu giá trị của x tăng lên mà giá trị y fx tương ứng cũng tăng lên thì hàm số y fx được gọi là đồng biến trên R. – Nếu giá trị của biến x tăng lên mà giá trị của y fx tương ứng giảm đi thì hàm số gọi là nghịch biến trên R. B. Bài tập và các dạng toán. Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số bậc nhất và các bài toán liên quan
Tài liệu gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề hàm số bậc nhất và các bài toán liên quan, giúp học sinh học tốt chương trình Đại số 9 chương 2. 1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ. + Dạng toán 1. Tìm điều kiện xác định của hàm số. + Dạng toán 2. Tính giá trị hàm số khi cho giá trị của ẩn. + Dạng toán 3. Xác định điểm thuộc (không thuộc) đồ thị hàm số. + Dạng toán 4. Sự đồng biến, nghịch biến của hàm số. 2. HÀM SỐ BẬC NHẤT VÀ ĐỒ THỊ HÀM SỐ BẬC NHẤT. + Dạng toán 1. Hàm số bậc nhất. Sự đồng biến và nghịch biến của hàm số bậc nhất. + Dạng toán 2. Đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax. + Dạng toán 3. Đồ thị hàm số y = ax + b (a khác 0). + Dạng toán 4. Hệ số góc của đường thẳng. Đường thẳng song song và đường thẳng cắt nhau. 3. TỔNG HỢP MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN HÀM SỐ BẬC NHẤT TRONG CÁC ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN. 4. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng căn bậc hai, căn bậc ba - Nguyễn Tài Chung
Tài liệu gồm 37 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, gồm tóm tắt lý thuyết và bài tập chọn lọc chuyên đề căn bậc hai, căn bậc ba, giúp học sinh học tốt chương trình Toán 9. 1 Căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 2 Căn bậc hai và đẳng thức √A2 = |A|. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 3 Liên hệ giữa phép nhân và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 4 Liên hệ giữa phép chia và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. [ads] 5 Bảng căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. 6 Biến đổi đơn giản biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 7 Rút gọn biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 8 Căn bậc ba. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. Ôn tập chương I. A Đề bài. B Lời giải.
Chuyên đề căn bậc hai và căn bậc ba - Bùi Đức Phương
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Bùi Đức Phương, tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng thuộc các chủ đề: căn bậc hai và căn bậc ba, trong chương trình môn Toán lớp 9. Bài 1 . Căn bậc hai. Dạng 1 . Tìm căn bậc hai của một số. Phương pháp giải: bám sát vào định nghĩa và tính chất của căn bậc hai. Dạng 2 . So sánh biểu thức không sử dụng máy tính. Phương pháp giải: sử dụng các tính chất của căn bậc hai. Dạng 3 . Biểu diễn hình học căn thức sử dụng thước kẻ và compa. Phương pháp giải: sử dụng các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông cho biết độ dài. Bài 2 . Căn thức bậc hai. Dạng 4 . Tìm điều kiện xác định của căn bậc hai. Phương pháp giải: + Một biểu thức a = √f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) ≥ 0. + Một biểu thức b = 1/√f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) > 0. Dạng 5 . Rút gọn các căn thức đơn giản. Phương pháp giải: sử dụng các tính chất của căn bậc hai. [ads] Bài 3 . Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 . Áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 4 . Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 . Các dạng bài tập biến đổi cơ bản biểu thức chứa căn thức bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Dạng 8 . Biến đổi biểu thức chứa căn bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 5 . Căn bậc ba. Dạng 9 . Các dạng bài tập liên quan căn bậc ba. Phương pháp giải: áp dụng định nghĩa và các tính chất của căn bậc ba. Ôn tập chương I
Giải bài toán bằng cách lập phương trình, hệ phương trình - Phạm Huy Huân
Tài liệu gồm 29 trang được biên soạn bởi thầy giáo Phạm Huy Huân, hướng dẫn giải bài toán bằng cách lập phương trình, hệ phương trình; giúp học sinh học tốt chương trình Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu giải bài toán bằng cách lập phương trình, hệ phương trình – Phạm Huy Huân: A. Các bước giải bài toán bằng cách lập phương trình Bước 1: Lập hệ phương trình. + Chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho các ẩn. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị sự tương quan giữa các đại lượng. Bước 2: Giải phương trình (hệ phương trình) vừa tìm được. Bước 3: Đối chiếu điều kiện và trả lời. [ads] B. Các dạng toán điển hình Dạng 1: Bài toán về quan hệ giữa các số. Dạng 2: Bài toán chuyển động. + Toán chuyển động không có sự tham gia của dòng nước. + Toán chuyển động có sự tham gia của dòng nước. Dạng 3: Toán về năng suất – Khối lượng công việc. Dạng 4: Toán về phần trăm (%). Dạng 5: Bài toán về công việc làm chung làm riêng. Dạng 6: Bài toán liên quan đến hình học. Dạng 7: Toán liên hệ thực tế.