Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm 2021 2022 trường Hàn Thuyên Bắc Ninh

Nội dung Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm 2021 2022 trường Hàn Thuyên Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng môn Toán lớp 11 lần 1 năm học 2021 – 2022 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi có đáp án mã đề Mã 132 Mã 209 Mã 357 Mã 485 Mã 570 Mã 628 Mã 743 Mã 896. Đề kiểm tra chất lượng Toán lớp 11 lần 1 năm 2021 – 2022 trường Hàn Thuyên – Bắc Ninh : + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có đúng 3 người biết cả tiếng Anh và tiếng Pháp? + Cho tứ diện ABCD có tất cả các cạnh bằng 2 a. Trên cạnh CD BC lần lượt lấy các điểm N M sao cho 2 1 3 2 CN MC CD MB. Trên trung tuyến AH của tam giác ABD lấy điểm P sao cho 4 5 PA PH. Diện tích thiết diện khi cắt tứ diện ABCD bởi mặt phẳng MNP là? + Cho tứ diện ABCD có AB CD 6 8. Cắt tứ diện bởi một mặt phẳng song song với AB CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng? + Công thức nào dưới đây ĐÚNG về giá trị lượng giác của góc lượng giác? Giả sử các điều kiện xác định được thỏa mãn? + Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi. Tìm xác suất của biến cố A: “3 viên bi lấy ra đều màu đỏ”.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 11 lần 2 năm 2018 - 2019 trường THPT Lê Xoay - Vĩnh Phúc
Tuần qua, trường THPT Lê Xoay, tỉnh Vĩnh Phúc đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần 2 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 11 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc  có mã đề 132, đề gồm 05 trang được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 theo từng giai đoạn để thúc đẩy nâng cao chất lượng học tập. Trích dẫn đề khảo sát Toán 11 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc : + Một hình vuông ABCD có cạnh bằng 1, có diện tích là S1. Nối bốn trung điểm A1, B1, C1, D1 lần lượt của bốn cạnh AB, BC, CD, DA ta được hình vuông A1B1C1D1 có diện tích là S2. Tương tự nối bốn trung điểm A2, B2, C2. D2 lần lượt của bốn cạnh A1B1, B1C1, C1D1, D1A1 ta được hình vuông A2B2C2D2 có diện tích là S3. Cứ tiếp tục như vậy ta thu được các diện tích S4, S5, S6 …. Tính lim(S1 + S2 + … + Sn)? [ads] + Từ hai vị trí A, B của một tòa nhà, người ta quan sát đỉnh C của một ngọn núi. Biết rằng A là điểm nằm phía chân của tòa nhà tiếp xúc với mặt đất, B là điểm nằm trên nóc của tòa nhà, phương AB vuông góc với mặt đất, khoảng cách AB là 70(m), phương nhìn AC tạo với phương nằm ngang góc 30 độ, phương nhìn BC tạo với phương nằm ngang góc 15 độ 30 phút. Hỏi ngọn núi đó cao bao nhiêu mét so với mặt đất (làm tròn đến hàng phần trăm)? + Nhà bạn An cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là 200.000đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm 7% so với giá tiền của mét khoan ngay trước nó. Hỏi nếu nhà bạn An khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?
Đề thi thử Toán 11 THPTQG 2019 lần 2 trường Ngô Sĩ Liên - Bắc Giang
Như định hướng của Bộ Giáo dục và Đào tạo, kể từ năm 2018 trở đi, nội dung đề thi THPT Quốc gia môn Toán sẽ được mở rộng đến các nội dung kiến thức Toán 10 và Toán 11, do đó, yêu cầu ôn tập, rèn luyện các kiến thức Toán ngay từ khi các em còn là học sinh lớp 10, lớp 11 là yêu cầu tất yếu, nhằm giúp các em được “xuất phát” ngay từ sớm, có được nhiều sự chuẩn bị hơn trước khi bước vào kỳ thi THPT Quốc gia môn Toán. Nắm được các yêu cầu đó, trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang đã tiến hành kỳ thi thử Trung học Phổ thông Quốc gia môn Toán lần thứ 2 dành cho học sinh khối 11 của trường trong năm học 2018 – 2019. giới thiệu đến bạn đọc đề thi thử Toán 11 THPTQG 2019 lần 2 trường THPT Ngô Sĩ Liên – Bắc Giang, đề có mã đề 132 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, học sinh làm bài thi Toán trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi thử Toán 11 THPTQG 2019 lần 2 trường THPT Ngô Sĩ Liên – Bắc Giang : + Khi ký hợp đồng dài hạn (10 năm) với các kỹ sư được tuyển dụng, công ty A đề xuất 4 phương án trả lương để người lao động chọn như sau: Phương án 1: Người lao động sẽ nhận 72000000 đồng cho năm làm việc đầu tiên và kể từ năm thứ hai, mức lương sẽ tăng thêm 5000000 đồng mỗi năm. Phương án 2: Người lao động sẽ nhận mức lương 18000000 đồng cho quí làm việc đầu và kể từ quí thứ hai mức lương sẽ tăng thêm 1000000 đồng cho mỗi quí. Phương án 3: Người lao động sẽ nhận mức lương 4000000 đồng cho 1 tháng làm việc đầu và kể từ tháng thứ hai mức lương sẽ tăng thêm 100000 đồng so với tháng trước đó. Phương án 4: Người lao động sẽ nhận 80000000 đồng cho năm làm việc đầu tiên và kể từ năm thứ hai, mức lương sẽ tăng thêm 10% so với năm trước đó. Ta nên chọn cách nhận lương theo phương án nào để được hưởng lương cao nhất? + Có 3 nhóm học sinh lớp 11 trường THPT Ngô Sĩ Liên – Bắc Giang. Nhóm A có 3 nữ và 2 nam, nhóm B có 3 nữ và 3 nam và nhóm C có 4 nữ và 3 nam. Thầy giáo cần chọn ra 1 bạn để giám sát các hoạt động của lớp gồm 4 người với yêu cầu có đủ cả nam, nữ và đủ cả ở ba nhóm A, B, C. Biết rằng ai cũng có khả năng được chọn. Số cách lập được ban như thế là? + Có 8 bạn ngồi cố định xung quanh một cái bàn tròn, mỗi bạn cầm một đồng xu như nhau (cân đối và đồng chất). Tất cả 8 bạn cùng tung đồng xu của mình, bạn có đồng xu ngửa thì đứng, bạn có đồng xu xấp thì ngồi. Xác suất để không có hai bạn liền kề cùng đứng là?
Đề thi thử Toán 11 THPTQG 2019 trường THPT Yên Phong 1 - Bắc Ninh lần 1
Đề thi thử Toán 11 THPTQG 2019 trường THPT Yên Phong 1 – Bắc Ninh lần 1 mã đề 101 gồm 05 trang với 50 câu trắc nghiệm khách quan, học sinh làm bài trong 90 phút, kỳ thi nhằm giúp học sinh sớm làm quen với hình thức thi THPT Quốc gia môn Toán, đồng thời rèn luyện nâng cao kỹ năng giải Toán 11, để có sự chuẩn bị lâu dài cho kỳ thi THPT Quốc gia – nhất là khi đề thi THPTQG môn Toán sẽ chưa cả các nội dung môn Toán 11, đề thi có đáp án. Trích dẫn đề thi thử Toán 11 THPTQG 2019 trường THPT Yên Phong 1 – Bắc Ninh lần 1 : + Tìm khẳng định đúng: A. Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. B. Nếu hai mặt phẳng song song với nhau thì mọi đường thẳng thuộc mặt phẳng này đều song song đường thẳng bất kì thuộc mặt phẳng kia. C. Nếu đường thẳng a thuộc mặt phẳng (P) song song với đường thẳng b thuộc mặt phẳng (Q) thì (P) // (Q). D. Nếu hai mặt phẳng song song với nhau thì mọi đường thẳng thuộc mặt phẳng này đều song song với mặt phẳng kia. [ads] + Tìm khẳng định đúng: A. Trong không gian hai đường thẳng không có điểm chung thì chéo nhau. B. Trong không gian hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau. C. Hai đường thẳng chéo nhau thì không có điểm chung. D. Trong không gian hai đường thẳng không có điểm chung thì song song với nhau. + Cho hình chóp S.ABCD đáy là hình bình hành tâm O và có M, N thứ tự là trung điểm của SA, SD. Điểm H tùy ý trên đoạn thẳng OM. Kết luận nào sai: A. Đường thẳng MN song song với (ABCD). B. Thiết diện của (MNO) và hình chóp là tam giác. C. (MNO) song song với (SBC). D. Đường thẳng HN song song với (SBC).
Đề thi KSCL Toán 11 lần 1 năm học 2018 - 2019 trường Tiên Du 1 - Bắc Ninh
Đề thi KSCL Toán 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh mã đề 201 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 và thúc đẩy các em không ngừng rèn luyện nâng cao kiến thức môn Toán, đề thi có đáp án các mã đề 201 → 208. Trích dẫn đề thi KSCL Toán 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh : + Cho tập A gồm n phần tử (n ≥ k ≥ 1, k, n thuộc N). Mỗi kết quả của việc lấy ra k phần tử khác nhau của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là: A. Một tổ hợp chập k của n phần tử. B. Một chỉnh hợp chập n của k phần tử. C. Một chỉnh hợp chập k của n phần tử. D. Một hoán vị của k phần tử. + Cho một đa giác đều gồm 2n đỉnh (n ≥ 2, n thuộc N). Chọn ngẫu nhiên 3 đỉnh trong 2n đỉnh của đa giác. Biết xác suất 3 đỉnh được chọn tạo thành một tam giác vuông là 1/5. Trong các mệnh đề sau, mệnh đề nào đúng? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt. B. Tồn tại bốn điểm không cùng thuộc một mặt phẳng. C. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một điểm chung khác nữa. D. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.