Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán cấp trường lần 1 năm 2019 - 2020 trường Tiên Du 1 - Bắc Ninh

Nhằm tuyển chọn các em học sinh lớp 12 học giỏi môn Toán vào đội tuyển học sinh giỏi Toán của nhà trường, vừa qua, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi Toán cấp trường lần thứ nhất năm học 2019 – 2020. Đề HSG Toán cấp trường lần 1 năm 2019 – 2020 trường Tiên Du 1 – Bắc Ninh mã đề 132 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề HSG Toán cấp trường lần 1 năm 2019 – 2020 trường Tiên Du 1 – Bắc Ninh : + Cho hàm số y = x^3 + 2x^2 + x + 1 có đồ thị (C) và điểm M thuộc đồ thị (C) có hoành độ a. Gọi S là tập hợp tất cả các giá trị nguyên của a ∈ Z ∩ [-2020;2020] để tiếp tuyến tại M của (C) vuông góc với một tiếp tuyến khác của (C). Tìm số phần tử của S. + Cho hình vuông C1 có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C2 (như hình vẽ). Từ hình vuông C2 lại tiếp tục làm như trên … ta nhận được dãy các hình vuông C1, C2, C3 … Cn, …. Gọi Si là diện tích của hình vuông Ci với i ∈ {1;2;3;…}. Đặt T = S1 + S2 + … + Sn + …. Biết T = 32/3, tính a? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy AD // BC. Gọi M là điểm thay đổi nằm trong hình thang ABCD. Từ M kẻ các đường thẳng song song với SA, SB lần lượt cắt các mặt phẳng (SBC) và (SAD) tại N và P. Biết diện tích tam giác SAB bằng S0 (không đổi). Tính giá trị lớn nhất của diện tích tam giác MNP theo S0 khi M là điểm thay đổi. + Trong không gian, cho tam giác đều ABC có cạnh bằng 11. Ba mặt cầu bán kính 3, 4 và 6 có tâm đặt lần lượt tại các đỉnh A, B và C của tam giác ABC. Có bao nhiêu mặt phẳng cùng tiếp xúc với cả ba mặt cầu đó? + Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Một thiết diện qua đỉnh tạo với đáy một góc 60 độ. Diện tích của thiết diện này bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn
Đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong thời gian 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức ngày 24 tháng 08 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn đội tuyển tham dự kỳ thi HSG Quốc gia Toán 12 năm 2019 sở GD và ĐT Lạng Sơn : + Trên mặt phẳng cho 2n^2 (n ≥ 2) đường thẳng sao cho không có hai đường nào song song và không có ba đường nào đồng quy. Các đường thẳng này chia mặt phẳng ra thành các miền rời nhau. Trong các miền đó, gọi F là tập tất cả các miền đa giác có diện tích hữu hạn. Chứng minh rằng có thể tô n đường thẳng trong số 2n^2 đường thẳng đã cho bằng màu xanh sao cho không có miền nào trong tập F có tất cả các cạnh màu xanh. [ads] + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm các cung nhỏ BC, AD. Gọi I, J lần lượt là trung điểm của OM, ON. Gọi K là điểm đối xứng với O qua M. Chứng minh rằng tứ giác BJDK nội tiếp đường tròn. Gọi P, Q lần lượt là hình chiếu vuông góc của I lên AB, AC. Chứng minh rằng AK ⊥ PQ. + Cho đa thức P(x) có hệ số nguyên, bậc 2 và hệ số bậc 2 bằng 1 thỏa mãn tồn tại đa thức Q(x) có hệ số nguyên sao cho P(x).Q(x) là đa thức có tất cả các hệ số đều là ±1. Chứng minh rằng nếu đa thức P(x) có nghiệm thực x0 thì |x0| < 2. Tìm tất cả các đa thức P(x).
Đề thi chọn đội tuyển môn Toán năm 2018 - 2019 trường THPT chuyên ĐHSP Hà Nội
Đề thi chọn đội tuyển môn Toán năm 2018 – 2019 trường THPT chuyên ĐHSP Hà Nội gồm 2 bài thi, mỗi đề gồm 4 bài toán tự luận, thí sinh có 180 phút để làm bài, kỳ thi diễn ra vào ngày 10/09/2018 và 11/09/2018. Thông qua kỳ thi này, trường THPT chuyên Sư Phạm Hà Nội sẽ tuyển chọn được các em có năng khiếu môn Toán để đưa vào đội tuyển, tiếp tục bồi dưỡng và tạo điều kiện để các em thử sức ở các kỳ thi cấp cao hơn.
Đề thi chọn HSG Toán 12 THPT năm học 2018 - 2019 sở GD và ĐT Hà Nội
Đề thi chọn HSG Toán 12 THPT năm học 2018 – 2019 sở GD và ĐT Hà Nội gồm 1 trang với 5 bài toán tự luận, thí sinh có 180 phút để làm bài, kỳ thi được diễn ra vào ngày 14 tháng 09 năm 2018 nhằm tuyển chọn các em học sinh lớp 12 có năng khiếu môn Toán để bồi dưỡng, đào tạo.
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 - 2018 sở GDĐT An Giang
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 – 2018 sở GD&ĐT An Giang gồm 10 bài toán, thí sinh làm bài trong khoảng thời gian 120 phút, kỳ thi được tổ chức ngày 31/3/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh : + Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t(h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là một phần đường parabol có đỉnh I(3;9) và có trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đường thẳng có hệ số góc k = 1/4. Tính quãng đường mà vật di chuyển được trong 6 giờ. [ads] + Một nhà thực vật học đo chiều dài của 100 lá cây và trình bày mẫu số liệu ở bảng bên (đơn vị: cm). Hỏi chiều dài lá cây trung bình là bao nhiêu? Tính phương sai; độ lệch chuẩncủa mẫu số liệu. + Hai khối hình hộp chữ nhật có kích thước 10 x 18 x l được đặt hai bên một khối trụ tròn xoay có chiều dài để ngăn chặn nó tự lăn. Khối thứ nhất chêm bên phải có mặt 10 x l áp sát với mặt đất, khối thứ hai chêm bên trái có mặt 18 x l áp sát với mặt đất. Biết phần dôi ra bên trái lớn hơn phân dôi ra bên phải 4 đơn vị. Tính bán kính của khối trụ.