Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trần Phú - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trần Phú, quận Kiến An, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trần Phú – Hải Phòng : + Mẹ Nam đi chợ bán x quả na, mẹ Nam bán được 1 quả giá 50 000(đồng) và 4 quả giá 35 000 (đồng), số na còn lại mẹ bán với giá 12 000 (đồng) một quả. Gọi y (nghìn đồng) là số tiền mà mẹ Nam thu được sau khi bán hết x quả na. a) Lập công thức tính y theo x. b) Hỏi mẹ Nam đã bán bao nhiêu quả na biết số tiền mẹ Nam thu được là 730 000 (đồng)? + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để sửa một ngôi nhà cần một số thợ làm việc trong một thời gian quy định. Nếu giảm 3 người thì thời gian kéo dài 6 ngày. Nếu tăng thêm 2 người thì xong sớm 2 ngày. Hỏi theo quy định cần bao nhiêu thợ và làm xong trong bao nhiêu ngày, biết rằng khả năng lao động của mỗi thợ đều như nhau? + Một lon nước ngọt hình trụ có thể tích bằng 3 108 cm. Biết chiều cao của lon nước ngọt gấp 2 lần đường kính đáy. Tính diện tích vật liệu cần dùng để làm một vỏ lon như vậy (bỏ qua diện tích phần ghép nối).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào môn Toán năm 2020 2021 trường THCS Xuân Canh Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2020 2021 trường THCS Xuân Canh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2020-2021 trường THCS Xuân Canh Hà Nội Đề thi thử vào môn Toán năm 2020-2021 trường THCS Xuân Canh Hà Nội Trên cơ sở kế hoạch tuyển sinh vào lớp 10 THPT năm học 2020-2021, trường THCS Xuân Canh đã tổ chức kỳ thi thử môn Toán vào ngày Thứ Bảy, 04 tháng 07 năm 2020. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn một số bài toán trong đề thi: 1) Giải bài toán về sản xuất: Tổ sản xuất có kế hoạch làm 600 sản phẩm, sau khi làm xong 400 sản phẩm, tăng năng suất lao động. Hỏi mỗi ngày tổ sản xuất cần làm bao nhiêu sản phẩm để hoàn thành sớm hơn kế hoạch 1 ngày. 2) Tính diện tích xung quanh của hộp sữa hình trụ có thể tích 250 (cm3) khi biết đường kính đáy và độ dài trục bằng nhau. 3) Chứng minh và xác định vị trí của điểm M trên đường thẳng d để diện tích tam giác OIK (O, I, K là các điểm đã cho) đạt giá trị lớn nhất. Với những bài toán phong phú và đa dạng như vậy, đề thi thử vào lớp 10 môn Toán năm 2020-2021 của trường THCS Xuân Canh Hà Nội không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn tạo cơ hội cho họ thử sức và chuẩn bị tốt cho kỳ thi chính thức.
Đề thi thử lần 1 vào 10 môn Toán năm 2020 2021 phòng GD ĐT Hải Hậu Nam Định
Nội dung Đề thi thử lần 1 vào 10 môn Toán năm 2020 2021 phòng GD ĐT Hải Hậu Nam Định Bản PDF - Nội dung bài viết Đề thi thử lần 1 vào 10 môn Toán năm 2020 2021 phòng GD ĐT Hải Hậu Nam Định Đề thi thử lần 1 vào 10 môn Toán năm 2020 2021 phòng GD ĐT Hải Hậu Nam Định Ngày ... tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 lần thi thứ nhất. Đề thi thử lần 1 vào 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Hải Hậu – Nam Định bao gồm 01 trang với 02 phần: phần trắc nghiệm (08 câu, 2,0 điểm) và phần tự luận (05 câu, 8,0 điểm), thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề thi thử: 1. Để tính khoảng cách từ điểm A đến điểm B nằm bên kia bờ sông, ta vạch đường vuông góc từ A đến AB, sau đó vạch CD vuông góc với phương BC cắt AB tại D. Nếu AD = 20m và AC = 30m, thì khoảng cách từ A đến B bằng bao nhiêu? 2. Cho hình nón có bán kính đáy là R (cm) và diện tích xung quanh bằng hai lần diện tích đáy. Hãy tính thể tích của hình nón đó. 3. Trong tam giác ABC (AB < AC) nhọn nội tiếp đường tròn (O), tia phân giác của góc BAC cắt BC và đường tròn (O) tại D và E. Giả sử tia phân giác của góc ABC cắt AD và AF tại K và P, CK cắt FA tại Q, và đường thẳng QB và PC cắt nhau tại I. Hãy chứng minh rằng KB.KP = KC.KQ và ba điểm A, D, I thẳng hàng.
Đề thi thử vào 10 năm 2020 2021 môn Toán trường Khánh Hòa Thái Nguyên
Nội dung Đề thi thử vào 10 năm 2020 2021 môn Toán trường Khánh Hòa Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán trường Khánh Hòa Thái Nguyên Đề thi thử vào lớp 10 môn Toán trường Khánh Hòa Thái Nguyên Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Khánh Hòa, tỉnh Thái Nguyên. Đề thi gồm 10 bài toán dạng tự luận, có lời giải chi tiết và thời gian làm bài là 120 phút. Dưới đây là một số câu hỏi đặc biệt trong đề thi: 1. Nhập khẩu chất lỏng I và chất lỏng II với tỉ lệ 4kg:3kg tạo thành hỗn hợp có khối lượng riêng 700 kg/m3. Biết khối lượng riêng của chất lỏng I lớn hơn 200 kg/m3 so với chất lỏng II, hãy tính khối lượng riêng của từng chất lỏng. 2. Xét đường tròn (O) có đường kính AB, CD vuông góc với nhau. Điểm M thuộc đoạn OC (M khác O và C), tia BM cắt đường tròn (O) tại N. Hãy chứng minh AOMN là một tứ giác nội tiếp và rằng ND là tia phân giác của tam giác ANB. 3. Hàm số y = (3m – 2)x – 1 + m (m là tham số). Tìm m sao cho hàm số đồng biến trên R và để đồ thị hàm số cắt hai trục tọa độ Ox, Oy lần lượt tại A, B.
Đề thi thử vào 10 năm 2020 2021 môn Toán trường Ngô Quyền Thái Nguyên
Nội dung Đề thi thử vào 10 năm 2020 2021 môn Toán trường Ngô Quyền Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào 10 năm 2020 2021 môn Toán trường Ngô Quyền Thái Nguyên Đề thi thử vào 10 năm 2020 2021 môn Toán trường Ngô Quyền Thái Nguyên Sytu xin được giới thiệu đến quý thầy cô giáo và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020-2021 môn Toán trường THPT Ngô Quyền, tỉnh Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút và có lời giải chi tiết. Trích dẫn một số câu hỏi từ đề thi: Cho hình vuông ABCD có cạnh là 2 cm. Đường tròn tâm O ngoại tiếp hình vuông. Tính diện tích hình tròn tâm O? Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Qua A vẽ hai cát tuyến CAD và EAF (C, E thuộc (O); D, F thuộc (O')). Đường thẳng CE cắt đường thẳng DF tại P. Chứng minh tứ giác BEPF nội tiếp. Cho tam giác ABC nhọn nội tiếp đường tròn (O), gọi BD, CE là các đường cao của tam giác ABC. Chứng minh OA vuông góc DE. Đây là một đề thi thử mang tính chất tham khảo cho các em học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi sắp tới. Hy vọng rằng các em sẽ rèn luyện và củng cố kiến thức một cách hiệu quả thông qua việc giải các bài toán trong đề thi này.