Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Thái Thịnh Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Thái Thịnh Hà Nội Bản PDF Đề thi giữa học kỳ 2 môn Toán lớp 9 năm học 2022-2023 tại trường THCS Thái Thịnh, Hà Nội đã được công bố. Đề thi bao gồm 5 bài toán tự luận, thời gian làm bài là 90 phút. Đề thi có đáp án và lời giải chi tiết để học sinh tham khảo sau khi hoàn thành.

Một trong những bài toán trong đề thi yêu cầu học sinh giải bằng cách lập phương trình hoặc hệ phương trình. Đề bài yêu cầu học sinh giải vấn đề về kế hoạch sản xuất của hai tổ, nơi tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Trong thời gian quy định, họ đã hoàn thành tổng cộng 120 sản phẩm. Học sinh cần tính số sản phẩm được giao của mỗi tổ theo kế hoạch.

Bài toán tiếp theo liên quan đến Parabol và đường thẳng trong mặt phẳng tọa độ Oxy. Học sinh cần tìm tọa độ các giao điểm của đường thẳng và Parabol, sau đó tính diện tích tam giác tạo bởi các điểm đó.

Đề bài cuối cùng đề cập đến một vấn đề liên quan đến đường tròn, đường thẳng, và các điểm được kết nối với nhau. Học sinh sẽ phải chứng minh các tính chất của tứ giác và các điểm trên hình vẽ.

Nội dung của đề thi được biên soạn một cách cẩn thận để kiểm tra kiến thức và kỹ năng của học sinh. Việc giải quyết các bài toán đòi hỏi sự tỉ mỉ, logic và khả năng suy luận của học sinh. Hy vọng rằng đề thi sẽ giúp học sinh ôn tập và nắm vững kiến thức trước kỳ thi cuối kỳ sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Bế Văn Đàn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Bảy ngày 02 tháng 03 năm 2024. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Bế Văn Đàn – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Một xe máy đi từ A đến B với một vận tốc đã định. Nếu vận tốc tăng thêm 20km/h thì đến B sớm 1 giờ so với dự định, nếu vận tốc giảm đi 10km/h thì đến B muộn 1 giờ so với dự định. Tính vận tốc và thời gian dự định của xe máy. + Cho parabol (P): y = x2 có đồ thị là parabol (P) và hàm số y = -x + 2 có đồ thị là đường thẳng d. a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm A, B của đường thẳng (d) và Parabol (P) bằng phép tính. Tính diện tích tam giác AOB. + Cho đường tròn (O; R) đường kính AB. Điểm I nằm giữa A và B sao cho IA < IB. Qua I vẽ dây MN vuông góc với AB. Trên đoạn MI lấy điểm E (E khác M; E khác I). Tia AE cắt đường tròn tại điểm thứ hai là K. 1) Chứng minh tứ giác BKEI nội tiếp. 2) Chứng minh: AE.AK = AM2. 3) Chứng minh: 4R2 = BI.BA + AE.AK. 4) Xác định vị trí của điểm I sao cho chu vi tam giác MIO đạt giá trị lớn nhất. Tính giá trị lớn nhất đó theo R.
Đề giữa học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Phan Chu Trinh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai Tổ sản xuất phải làm được 330 sản phẩm. Nhưng khi thực hiện, do Tổ 1 làm vượt mức kế hoạch 10%, Tổ 2 làm giảm 15% so với mức kế hoạch nên cả hai Tổ làm được 318 sản phẩm. Tính số sản phẩm mà mỗi Tổ phải làm theo kế hoạch. + Một sân vận động có đường chạy đua dài 400m (hình bên). Đường chạy gồm các đoạn AB, CD và hai cung tròn có đường kính là BC và AD. Biết ABCD là hình chữ nhật và AB = 100m. Tính độ dài đường kính BC (lấy π ≈ 3,14; kết quả làm tròn đến chữ số thập phân thứ 2). + Cho nửa đường tròn tâm (O) đường kính AB R 2. Kẻ hai tiếp tuyến Ax, By với nửa đường tròn. Gọi M là trung điểm của OA và lấy điểm N thuộc nửa đường tròn sao cho NA < NB. Đường thẳng đi qua N và vuông góc với MN cắt Ax, By lần lượt tại C và D. a) Chứng minh tứ giác MNDB nội tiếp b) Chứng minh: ANM BND và AC.BD AM.BM 2 3 4 R c) Xác định vị trí của N trên nửa (O) sao cho diện tích ∆ CMD đạt giá trị nhỏ nhất.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi mã đề 901 và mã đề 902 gồm 01 trang, hình thức 100% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Ngọc Lâm – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất 800 sản phẩm trong một thời gian nhất định. Thực tế do áp dụng kỹ thuật mới nên tổ I đã vượt mức 15% và tổ II đã vượt mức 20%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 145 sản phẩm. Tính số sản phẩm được giao của mỗi tổ theo kế hoạch? + Cho hàm số y = x2 (P) và đường thẳng (d): y = 4x + 5 a) Vẽ đồ thị hàm số y = x2. b) Tìm tọa độ giao điểm của (d) và (P). + Cho điểm S nằm ngoài đường tròn (O;R), kẻ các tiếp tuyến SA, SB (A, B là tiếp điểm) và cát tuyến SMN với (O) (SM < SN và SN nằm trong góc OSA). a) Chứng minh: Tứ giác SAOB là tứ giác nội tiếp. b) Chứng minh: SA2 = SM.SN. c) Gọi K là giao điểm của SO và AB. Chứng minh: Tích OK.OS không phụ thuộc vào vị trí của điểm S. d) Kẻ MH vuông góc với OA; MH cắt AN, AB theo thứ tự tại D và E. Chứng minh: E là trung điểm của DM.
Đề giữa học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Bỉnh Khiêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Bỉnh Khiêm, quận Long Biên, thành phố Hà Nội; đề thi mã đề 901 và 902 gồm 02 trang, hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Bỉnh Khiêm – Hà Nội : + Trong một đường tròn, khẳng định nào sau đây sai? A. Các góc nội tiếp bằng nhau chắn các cung bằng nhau. B. Các góc nội tiếp cùng chắn một cung thì bằng nhau. C. Các góc nội tiếp chắn các cung bằng nhau thì bằng nhau. D. Góc nội tiếp có số đo bằng số đo của góc ở tâm cùng chắn một cung. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất phải làm 700 sản phẩm. Nhưng do tổ I làm vượt mức 15% so với kế hoạch, tổ II làm vượt mức kế hoạch 20% nên cả hai tổ đã làm được 820 sản phẩm. Tính số sản phẩm mỗi tổ phải làm theo kế hoạch? + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường trong (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. a) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. b) Chứng minh AB.AC = AM2. c) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử ba điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.