Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Tô Hiến Thành Hà Nội

Nội dung Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Tô Hiến Thành Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 Toán lớp 9 năm 2020 - 2021 trường THCS Tô Hiến Thành Hà Nội Đề thi giữa học kì 1 Toán lớp 9 năm 2020 - 2021 trường THCS Tô Hiến Thành Hà Nội Đề thi giữa học kì 1 môn Toán lớp 9 năm học 2020 - 2021 của trường THCS Tô Hiến Thành Hà Nội bao gồm một trang với 6 bài toán dạng tự luận. Thời gian làm bài là 90 phút và đề thi đi kèm lời giải chi tiết. Một trong số các bài toán trong đề thi là: 1. Một con mèo đang ở trên cành cây cao 6,5m. Để bắt mèo xuống, cần đặt một cái thang sao cho góc của thang với mặt đất là bao nhiêu, biết chiếc thang có chiều dài 6,7m? (Kết quả làm tròn đến độ). 2. Cho tam giác ABC vuông tại A có đường cao AH. Các yêu cầu trong bài toán bao gồm tính độ dài các đoạn BC, HB, HC, AH; chứng minh các mệnh đề liên quan đến tam giác ABC; chứng minh một phương trình. Đề thi còn đề cập đến việc giải phương trình và các kiến thức khác liên quan đến Toán học. Trên đây là một số tóm tắt về nội dung của đề thi giữa học kì 1 môn Toán lớp 9 năm 2020 - 2021 tại trường THCS Tô Hiến Thành Hà Nội.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra giữa học kỳ I lớp 9 môn Toán năm học 2017 2018 trường THCS Tân Mai Hà Nội
Nội dung Đề kiểm tra giữa học kỳ I lớp 9 môn Toán năm học 2017 2018 trường THCS Tân Mai Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kỳ I lớp 9 môn Toán năm học 2017 2018 trường THCS Tân Mai Hà Nội: Đề kiểm tra giữa học kỳ I lớp 9 môn Toán năm học 2017 2018 trường THCS Tân Mai Hà Nội: Đề kiểm tra giữa học kỳ I môn Toán lớp 9 năm học 2017 – 2018 trường THCS Tân Mai – Hà Nội bao gồm tổng cộng 8 câu hỏi, trong đó có 4 câu trắc nghiệm và 4 câu tự luận. Thời gian làm bài cho bài kiểm tra là 45 phút. Đề kiểm tra này được thiết kế để đánh giá kiến thức và kỹ năng của học sinh trong môn Toán ở khóa học đầu tiên của năm học. Học sinh sẽ phải làm bài trắc nghiệm để kiểm tra kiến thức cơ bản và bài tự luận để thể hiện khả năng làm bài toán và suy luận của mình.
Đề kiểm tra giữa học kỳ I năm học 2017 2018 lớp 9 môn Toán trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề kiểm tra giữa học kỳ I năm học 2017 2018 lớp 9 môn Toán trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề kiểm tra Toán lớp 9 trường THPT chuyên Hà Nội Amsterdam Đề kiểm tra Toán lớp 9 trường THPT chuyên Hà Nội Amsterdam Đề kiểm tra giữa học kỳ I năm học 2017 - 2018 môn Toán lớp 9 trường THPT chuyên Hà Nội - Amsterdam được thiết kế với 1 trang bao gồm 3 bài toán tự luận. Thời gian làm bài được giới hạn trong 45 phút, đề kiểm tra được chuẩn bị cẩn thận với câu hỏi phân loại dành cho học sinh lớp chọn. Đề kiểm tra này là cơ hội để học sinh thể hiện kiến thức và kỹ năng Toán của mình trong suốt kỳ học đầu tiên của năm học.
Đề giữa học kỳ 1 Toán 9 năm 2023 - 2024 phòng GDĐT Thủ Dầu Một - Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thủ Dầu Một, tỉnh Bình Dương; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Ngô Gia Tự - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Ngô Gia Tự, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kỳ 1 Toán 9 năm 2023 – 2024 trường THCS Ngô Gia Tự – Hà Nội : + Một chiếc thang dài 3,5m. Cần đặt chân thang cách tường một khoảng bằng bao nhiêu để nó tạo với phương nằm ngang của mặt đất một góc an toàn 650 (Làm tròn kết quả đến chữ số thập phân thứ hai). + Cho ABC vuông tại A (AB < AC), đường cao AH. 1. Cho HB = 4cm; HC = 9cm. Tính AH và số đo góc ABC (Làm tròn đến độ). 2. Gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. Chứng minh: a) Tứ giác ADHE là hình chữ nhật. b) AD.AB + AE.AC = 2DE2. + Tam giác ABC vuông tại A, đường cao AH. Thì AC2 bằng: A. HC.BC B. BH.HC C. BH.BC D. AH.BC.