Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 2 năm 2018 - 2019 trường Thuận Thành 1 - Bắc Ninh

Nằm trong kế hoạch ôn tập kiểm tra Toán 10 định kỳ, vừa qua, trường THPT Thuận Thành 1 – Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng Toán 10 năm học 2018 – 2019 lần thứ 2, nội dung kiểm tra bao gồm kiến thức Toán 10 các em đã được học từ đầu năm học đến giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh có mã đề 132 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm 04 lựa chọn A, B, C, D, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? [ads] + Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I (2;9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau? + Một mảnh vườn hình chữ nhật có hai kích thước là 40m và 60m. Cần tạo ra một lối đi xung quanh mảnh vườn có chiều rộng như nhau sao cho diện tích còn lại là 1500m2 (hình vẽ bên). Hỏi chiều rộng của lối đi là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL học kỳ 1 Toán 10 năm học 2018 - 2019 sở GD và ĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 nội dung đề KSCL học kỳ 1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Vĩnh Phúc, đề thi có mã đề 132 gồm 2 trang, thời gian làm bài dành cho học sinh là 90 phút, đề được biên soạn theo cấu trúc trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 12 câu, chiếm 3 điểm, phần tự luận gồm 7 câu, chiếm 7 điểm, đề thi có đáp án và lời giải chi tiết các mã đề 132, 256, 379, 412. Trích dẫn đề KSCL học kỳ 1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Vĩnh Phúc : + Câu nào sau đây không là mệnh đề? A. 5 chia hết cho 3. B. 5 lớn hơn 3. C. Anh hùng Nguyễn Viết Xuân quê ở huyện Vĩnh Tường, tỉnh Vĩnh Phúc. D. Đội nào vô địch AFF Cup năm 2018? [ads] + Một lớp có 40 học sinh, trong đó có 24 học sinh giỏi Toán, 20 học sinh giỏi Văn và 12 học sinh không giỏi môn nào trong hai môn Toán và Văn. Hỏi lớp đó có bao nhiêu học sinh giỏi cả hai môn Toán và Văn? + Trên mặt phẳng với hệ tọa độ Oxy cho hai điểm A(1;-1), B(2;4). Tìm tọa độ của điểm M để tứ giác OBMA là một hình bình hành.
Đề KSCL 8 tuần kì 2 Toán 10 năm 2023 - 2024 trường THPT Vũ Văn Hiếu - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng 8 tuần học kì 2 môn Toán 10 năm học 2023 – 2024 trường THPT Vũ Văn Hiếu, tỉnh Nam Định. Đề thi gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm trả lời ngắn; Tự luận. Đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL 8 tuần kì 2 Toán 10 năm 2023 – 2024 trường THPT Vũ Văn Hiếu – Nam Định : + Một hộp có 20 quả cầu gồm 14 quả cầu đỏ khác nhau và 6 quả cầu xanh khác nhau. Chọn ngẫu nhiên đồng thời 4 quả cầu. Tính xác suất để chọn đươc số quả cầu màu đỏ bằng số quả cầu màu xanh. Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau. + Một đội văn nghệ có 20 người, trong đó 10 nam và 10 nữ. Hỏi có bao nhiêu cách chọn ra 5 người sao cho có ít nhất 2 nam và ít nhất 1 nữ trong 5 người đó. + Chỉ số IQ của một nhóm học sinh được thống kê như sau: 60 78 80 64 70 76 80 74 86 90 a) Tìm chỉ số IQ trung bình của nhóm học sinh trên. b) Tìm tứ phân vị của mẫu số liệu trên.
Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang
Nội dung Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang Bản PDF Đề kiểm tra định kỳ học kỳ 1 môn Toán lớp 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh Bản PDF Đề kiểm tra định kỳ lần 2 Toán lớp 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).