Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

53 đề ôn tập tuyển sinh lớp 10 môn Toán năm 2024 - 2025 sở GDĐT TP HCM

Tài liệu gồm 316 trang, được biên tập bởi quý thầy, cô giáo nhóm LaTeX Toán THPT 2018, tuyển tập 53 đề ôn tập tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. MỤC LỤC : Đề số 1. Đề TKTS10 Năm học 2024 − 2025 Trường THCS Á Châu 4. Đề số 2. Đề TKTS10 Năm học 2023 − 2024 Trường THCS Bình Quới 8. Đề số 3. Đề tham khảo tuyển sinh Năm học 2024 − 2025 Trường THCS Thanh Đa – Bình Thạnh 14. Đề số 4. Đề tuyển sinh lớp 10 Năm học 2024−2025 Trường THCS Bình Lợi Trung 19. Đề số 5. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Rạng Đông 24. Đề số 6. Đề tham khảo tuyển sinh vào lớp 10 Năm học 2023 − 2024 Trường THCS Phú Mỹ 30. Đề số 7. Đề tham khảo tuyển sinh 10 Năm học 2023 − 2024 Phòng GD&ĐT Quận 7 36. Đề số 8. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2024 − 2025 PHÒNG GD&ĐT QUẬN 7 41. Đề số 9. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS THANH ĐA 47. Đề số 10. Đề Tham Khảo Tuyển Sinh 10 Năm học 2023−2024 Trường THCS Yên Thế – Quận Bình Thạnh 52. Đề số 11. Đề TKTS10-2024-2025 Năm học 2023 − 2024 THCS Trương Công Định 57. Đề số 12. Đề kiểm tra giữa kì 2 Năm học 2023 − 2024 Trường THCS Lam Sơn – Bình Thạnh 63. Đề số 13. Đề Tham khảo tuyển sinh 10 Năm học 2023−2024 Trường THCS Hà Huy Tập 70. Đề số 14. Đề tuyển sinh 10 Năm học 2023−2024 Trường THCS Đống Đa 76. Đề số 15. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Quận 7 – Đề 3 82. Đề số 16. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Nguyễn Văn Bé 89. Đề số 17. ĐỀ THAM KHẢO THI TUYỂN SINH LỚP 10 Năm học 2024 − 2025 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO QUẬN 8 95. Đề số 18. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Cửu Long 102. Đề số 19. Đề đề nghị Tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Chu Văn An 109. Đề số 20. Đề thi tuyển sinh lớp 10 THPT Năm học 2023−2024 Trường THCS Hậu Giang 115. Đề số 21. Đề tham khảo TS 10 Năm học 2023 − 2024 Trường THCS Lê Anh Xuân 121. Đề số 22. Đề đề nghị Tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Lê Quý Đôn Quận 11 128. Đề số 23. Đề thi tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Lữ Gia 135. Đề số 24. Đề Tham Khảo Tuyển Sinh 10 Năm học 2023−2024 Trường THCS Nguyễn Minh Hoàng 141. Đề số 25. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Nguyễn Văn Phú 147. Đề số 26. Đề Tham Khảo TS10 Năm học 2024 − 2025 Trường THCS Việt Mỹ Q11 152. Đề số 27. Đề Tham khảo tuyển sinh vào 10 Năm học 2023 − 2024 Trường THCS Phước Hiệp – Củ Chi 156. Đề số 28. ĐỀ THAM KHẢO KỲ THI TUYỂN SINH 10 Năm học 2023−2024 Trường THCS BÌNH HÒA 163. Đề số 29. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO QUẬN 8 168. Đề số 30. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 TRƯỜNG TH–THCS HỒNG NGỌC 175. Đề số 31. ĐỀ ĐỀ NGHỊ TS10-HCM-2024 Năm học 2023−2024 Trường THCS Đồng Khởi 180. Đề số 32. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Lê Anh Xuân 185. Đề số 33. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Hùng Vương 191. Đề số 34. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS TÔN THẤT TÙNG 196. Đề số 35. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Lê Lợi 201. Đề số 36. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Tân Thới Hòa 207. Đề số 37. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Hậu Giang 212. Đề số 38. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Nguyễn Huệ 219. Đề số 39. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Nguyễn Trãi 226. Đề số 40. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Lê Thánh Tông 230. Đề số 41. KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG Năm học 2024 − 2025 Trường THCS Âu Lạc 236. Đề số 42. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 Trường THCS LÝ THƯỜNG KIỆT 243. Đề số 43. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2024 − 2025 Trường THCS Nguyễn Gia Thiều 250. Đề số 44. Đề thi thử vào lớp 10 Năm học 2023 − 2024 Trường THCS Ngô Quyền 256. Đề số 45. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 Trường THCS Quận 10 262. Đề số 46. Đề Tham khảo Tuyển sinh 10 Năm học 2023−2024 Trường THCS Phạm Ngọc Thạch 275. Đề số 47. Đề tham khảo tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Quang Trung 281. Đề số 48. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 Trường THCS QUỐC TẾ Á CHÂU 286. Đề số 49. Đề Tham khảo TS10 Năm học 2023 − 2024 Trường THCS Trường Chinh 291. Đề số 50. Đề kiểm tra tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Trần Văn Đang – Quận Tân Bình 296. Đề số 51. KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG Năm học 2024 − 2025 Trường THCS Trần Văn Quang 301. Đề số 52. Đề thi thử tuyển sinh 10 TPHCM Năm học 2023 − 2024 Trường THCS Lam Sơn – Q. Bình Thạnh 307. Đề số 53. Đề thi thử tuyển sinh 10 TPHCM Năm học 2023 − 2024 Trường THCS Điện Biên – Q. Bình Thạnh 312.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An (đề thi dành cho thí sinh thi vào trường THPT chuyên Phan Bội Châu và trường THPT chuyên ĐH Vinh, tỉnh Nghệ An); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Nguyễn Nhất Huy và thầy Trịnh Văn Luân). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm (O). Các đường cao AD, BE, CF cắt nhau tại H. Tia AH cắt (O) tại K (K khác A), tia KO cắt (O) tại M (M khác K) và tia MH cắt (O) tại P (P khác M). a) Chứng minh OD ∥ MH và 4 điểm A, O, D, P cùng nằm trên một đường tròn. b) Gọi Q là giao điểm của P A và EF. Chứng minh DQ ⊥ EF. c) Tia P E và tia P F cắt đường tròn (O) lần lượt tại L và N (L, N khác P). Chứng minh LC = NB. + Cho tập hợp A gồm 2022 số tự nhiên liên tiếp từ 1 đến 2022. Tìm một số tự nhiên n nhỏ nhất sao cho mọi tập hợp con gồm n phần tử của A đều chứa 3 phần tử là các số đôi một nguyên tố cùng nhau. + Cho n là số nguyên dương. Chứng minh rằng 2n + 36 và 122n + 25 không đồng thời là số chính phương.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Trung tâm toán học Pytago). Trích dẫn Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai : + Hai ô tô xuất phát cùng một thời điểm từ địa điểm A đến địa điểm B với vận tốc mỗi ô tô không đổi. Sau 1 giờ quãng đường đi được của ô tô thứ nhất nhiều hơn quãng đường đi được của ô tô thứ hai là 5km. Quãng đường đi được của ô tô thứ hai sau 3 giờ nhiều hơn quãng đường đi được của ô tô thứ nhất sau 2 giờ là 35km. Tính vận tốc mỗi ô tô. + Chọn ngẫu nhiên một số trong các số tự nhiên từ 1 đến 10. Tính xác suất để số được chọn là số chia hết cho 5. + Cho đường tròn (O) và điểm M ngoài đường tròn. Qua M kẻ hai tiếp tuyến phân biệt MA, MB đến đường tròn (A, B là các tiếp điểm). a) Chứng minh MAOB là tứ giác nội tiếp. b) Đường thẳng MO cắt đường tròn (O) lần lượt tại hai điểm C, D phân biệt sao cho MC < MD. Chứng minh: MA · DA = MD · AC c) Đường thẳng BO cắt đường tròn (O) tại điểm thứ hai là E. Kẻ AI vuông góc với BE tại I. Đường thẳng ME cắt AI tại K, đường thẳng MO cắt AB tại H. Chứng minh hai đường thẳng HK và BE song song.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai (đề thi dành cho thí sinh thi vào trường THPT chuyên Lào Cai); kỳ thi được diễn ra vào thứ Bảy ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Trung tâm toán học Pytago). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai : + Gọi S là tập hợp các số tự nhiên có 4 chữ số. Lấy ngẫu nhiên 1 số từ tập S. Tính xác suất để số lấy được là số chính phương không vượt quá 2022. + Theo kế hoạch một công nhân phải làm 54 sản phẩm trong một khoảng thời gian dự định. Do yêu cầu đột xuất, người đó phải làm 68 sản phẩm nên mỗi giờ người đó đã làm tăng thêm 3 sản phẩm vì thế công việc hoàn thành sớm hơn so với dự định là 20 phút. Hỏi theo dự định mỗi giờ người đó phải làm bao nhiêu sản phẩm, biết rằng mỗi giờ người đó làm được không quá 12 sản phẩm. + Cho tam giác nhọn ABC không cân (AB < AC) nội tiếp đường tròn (O), ba đường cao AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB) của tam giác ABC cắt nhau tại H. Gọi I, M lần lượt là trung điểm của AH và BC. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm K (K khác A). a) Chứng minh rằng tứ giác DMEF nội tiếp. b) Chứng minh rằng tứ giác IOMK là hình thang cân. c) Chứng minh rằng KF.HE = KE.HF. d) Tiếp tuyến tại A và K của đường tròn ngoại tiếp tam giác AEF cắt nhau tại T. Chứng minh rằng TM, AH, EF đồng quy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Đà Nẵng (đề thi dành cho thí sinh thi vào trường THPT chuyên Lê Quý Đôn, thành phố Đà Nẵng); kỳ thi được diễn ra vào sáng Chủ Nhật ngày 12 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Đà Nẵng : + Cho phương trình x2 – 2x + k2 – 3k – 9 = 0 với k là tham số. Khi phương trình đã cho có hai nghiệm x1 và x2, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Q. + Cho đường tròn (O) bán kính R và điểm A nằm trên đường tròn. Đường tròn (A;R) cắt đường tròn (O) tại hai điểm B và C. Gọi M là trung điểm của AB, tia MO cắt (O) tại điểm D. Tia BC cắt AD tại E và cắt (O) tại điểm thứ hai là F. Tính độ dài đoạn thẳng DE và diện tích tứ giác ACFE theo R. + Cho tam giác ABC nhọn có AB < AC, trực tâm H và nội tiếp đường tròn (O). Gọi M là trung điểm của BC và K là hình chiếu của H trên AM. Tia AM cắt đường tròn ngoại tiếp tam giác BKC tại điểm thứ hai là N. Chứng minh rằng tứ giác ABNC là hình bình hành.