Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trắc nghiệm VD - VDC nón - trụ - cầu - Đặng Việt Đông

Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 2 – nón – trụ – cầu, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề nón – trụ – cầu. Tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông gồm 94 trang với các bài tập trắc nghiệm nón – trụ – cầu ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về nón – trụ – cầu được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông: CHỦ ĐỀ 1 . MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. + Dạng 1. Thiết diện của hình nón cắt bởi một mặt phẳng. + Dạng 2. Bài toán liên quan đến thiết diện qua đỉnh của hình nón. + Dạng 3. Bài toán hình nón ngoại tiếp và nội tiếp hình chóp. + Dạng 4. Bài toán hình nón cụt. + Dạng 5. Bài toán hình nón tạo bởi phần còn lại của hình tròn sau khi cắt bỏ đi hình quạt. CHỦ ĐỀ 2 . MẶT TRỤ TRÒN XOAY VÀ KHỐI TRỤ. + Dạng 1. Thiết diện của hình trụ cắt bởi một phẳng. + Dạng 2. Thể tích khối tứ diện có hai cạnh là đường kính hai đáy. + Dạng 3. Xác định góc khoảng cách. + Dạng 4. Xác định mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. + Dạng 5. Hình trụ ngoại tiếp, nội tiếp một hình lăng trụ đứng. CHỦ ĐỀ 3 . MẶT CẦU VÀ KHỐI CẦU. + Dạng 1. Mặt cầu ngoại tiếp, nội tiếp khối đa diện. + Dạng 2. Cực trị về khối cầu và mặt tròn xoay. + Dạng 3. Tổng hợp về mặt tròn xoay. CHỦ ĐỀ 4 . ỨNG DỤNG THỰC TẾ. Xem thêm : Trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông

Nguồn: toanmath.com

Đọc Sách

Tài liệu chuyên đề mặt nón, mặt trụ, mặt cầu
Tài liệu gồm 302 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề mặt nón, mặt trụ, mặt cầu, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. I. MẶT TRÒN XOAY – NÓN – TRỤ. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. + Dạng 1. Xác định các yếu tố cơ bản (r, l, h) của hình nón. Tính diện tích xung quanh, diện tích toàn phần của hình nón. Tính thể tích khối nón. + Dạng 2. Tính diện tích xung quanh, diện tích toàn phần và thể tích khối trụ. II. MẶT CẦU. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Mặt nón, hình nón và khối nón. 3. Mặt trụ, hình trụ và khối trụ. 4. Mặt cầu và khối cầu.
Chuyên đề mặt nón, mặt trụ, mặt cầu - Phạm Hoàng Long
Tài liệu gồm 74 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, bao gồm lý thuyết trọng tâm, công thức cần nhớ, bài tập trắc nghiệm và bài tập tự luận chuyên đề mặt nón, mặt trụ, mặt cầu; giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2 và ôn thi tốt nghiệp THPT, tuyển sinh vào Cao đẳng – Đại học. Nón – Trụ – Cầu. 1. Hình nón. 2. Hình trụ. 3. Hình cầu. 4. Hình nón, hình trụ, hình cầu nội tiếp (ngoại tiếp). Bài tập tự luận. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện. Bài tập trắc nghiệm. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện.
Chủ đề khối nón - khối trụ - khối cầu ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề khối nón – khối trụ – khối cầu ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. LÍ THUYẾT. + MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. 1. Mặt nón tròn xoay. 2. Khối nón. + MẶT TRỤ TRÒN XOAY. 1. Mặt trụ. 2. Hình trụ tròn xoay và khối trụ tròn xoay. + MẶT CẦU VÀ KHỐI CẦU. 1. Mặt cầu. 2. Công thức tính diện tích mặt cầu và thể tích khối cầu. 3. Một số công thức tính đặc biệt về khối tròn xoay. VÍ DỤ MINH HỌA. DẠNG 1 Các yếu tố liên quan đến khối nón, khối trụ. DẠNG 2 Khối tròn xoay nội, ngoại tiếp khối đa diện. DẠNG 3 Bài toán cực trị và toán thực tế. DẠNG 4 Khối cầu ngoại tiếp khối đa diện. DẠNG 5 Khối tròn xoay trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán thực tế hình học không gian
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán thực tế hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Người ta muốn thiết kế một bể cá bằng kính không có nắp với thể tích 72dm3 và chiều cao là 3dm. Một vách ngắn (cung mặt kính) ở giữa, chia bể cá thành hai ngăn, với các kích thước a b (đơn vị dm) như hình vẽ. Tính a b để bể cá tốn ít nguyên liệu nhất (tính cả tấm kính ở giữa), coi bề dày các tấm kính như nhau và không ảnh hưởng đến thể tích của bể. + Một bình đựng đầy nước có dạng hình nón (không có đáy). Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 318π dm. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu đã chìm trong nước (hình dưới đây). Tính thể tích nước còn lại trong bình. + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4 3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337 3 3 cm π. Tính thể tích nước ban đầu ở trong bể. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.