Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trắc nghiệm VD - VDC nón - trụ - cầu - Đặng Việt Đông

Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 2 – nón – trụ – cầu, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề nón – trụ – cầu. Tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông gồm 94 trang với các bài tập trắc nghiệm nón – trụ – cầu ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về nón – trụ – cầu được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC nón – trụ – cầu – Đặng Việt Đông: CHỦ ĐỀ 1 . MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. + Dạng 1. Thiết diện của hình nón cắt bởi một mặt phẳng. + Dạng 2. Bài toán liên quan đến thiết diện qua đỉnh của hình nón. + Dạng 3. Bài toán hình nón ngoại tiếp và nội tiếp hình chóp. + Dạng 4. Bài toán hình nón cụt. + Dạng 5. Bài toán hình nón tạo bởi phần còn lại của hình tròn sau khi cắt bỏ đi hình quạt. CHỦ ĐỀ 2 . MẶT TRỤ TRÒN XOAY VÀ KHỐI TRỤ. + Dạng 1. Thiết diện của hình trụ cắt bởi một phẳng. + Dạng 2. Thể tích khối tứ diện có hai cạnh là đường kính hai đáy. + Dạng 3. Xác định góc khoảng cách. + Dạng 4. Xác định mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. + Dạng 5. Hình trụ ngoại tiếp, nội tiếp một hình lăng trụ đứng. CHỦ ĐỀ 3 . MẶT CẦU VÀ KHỐI CẦU. + Dạng 1. Mặt cầu ngoại tiếp, nội tiếp khối đa diện. + Dạng 2. Cực trị về khối cầu và mặt tròn xoay. + Dạng 3. Tổng hợp về mặt tròn xoay. CHỦ ĐỀ 4 . ỨNG DỤNG THỰC TẾ. Xem thêm : Trắc nghiệm VD – VDC khối đa diện và thể tích khối đa diện – Đặng Việt Đông

Nguồn: toanmath.com

Đọc Sách

Mặt cầu ngoại tiếp, nội tiếp khối đa diện - Lê Bá Bảo
Tài liệu gồm 22 trang trình bày phương pháp giải toán và bài tập trắc nghiệm có lời giải chi tiết chủ đề mặt cầu ngoại tiếp, nội tiếp khối đa diện. MẶT CẦU NGOẠI TIẾP, NỘI TIẾP KHỐI ĐA DIỆN I – PHƯƠNG PHÁP 1. Chứng minh mặt cầu S(O;R) ngoại tiếp đa diện Thông thường ta chứng minh mặt cầu đi qua tất cả các đỉnh của đa diện thông qua một số nhận xét quan trọng sau: + Điểm M thuộc S(O;R) ⇔ OM = R. + Điểm M thuộc S(O;R) khi chỉ khi M nhìn đường kính của mặt cầu dưới 1 góc vuông. 2. Điều kiện cần và đủ + Để một hình chóp có mặt cầu ngoại tiếp là đáy của hình chóp có đường tròn ngoại tiếp. + Để một hình lăng trụ có mặt cầu ngoại tiếp là hình lăng trụ đó phải là hình lăng trụ đứng và có đáy lăng trụ là một đa giác nội tiếp. 3. Mặt phẳng trung trực của đoạn thẳng Cho đoạn thẳng AB. Mặt phẳng (α) được gọi là mặt phẳng trung trực của đoạn thẳng AB khi mp (α) đi qua trung điểm I của AB và vuông góc với AB. Lưu ý : (α) là tập hợp tất cả các điểm M trong không gian cách đều A, B. [ads] Dạng toán: CHỨNG MINH KHỐI ĐA DIỆN NỘI TIẾP MẶT CẦU 1. Thuật toán 1: SỬ DỤNG MỘT TRỤC XÁC ĐỊNH TÂM MẶT CẦU NGOẠI TIẾP ĐA DIỆN Cho hình chóp SA1A2 … An (thoả mãn điều kiện tồn tại mặt cầu ngoại tiếp). Thông thường, để xác định mặt cầu ngoại tiếp hình chóp ta thực hiện theo hai bước: + Bước 1: Xác định tâm của đường tròn ngoại tiếp đa giác đáy. Dựng Δ: trục đường tròn ngoại tiếp đa giác đáy. + Bước 2: Lập mặt phẳng trung trực (α) của một cạnh bên. Lúc đó: + Tâm O của mặt cầu: Δ ∩ mp(α) = O. + Bán kính: R = OA (= OS). Tuỳ vào từng trường hợp. 2. Thuật toán 2: SỬ DỤNG HAI TRỤC XÁC ĐỊNH TÂM MẶT CẦU NGOẠI TIẾP ĐA DIỆN Cho hình chóp SA1A2 … An (thỏa mãn điều kiện tồn tại mặt cầu ngoại tiếp). Thông thường, để xác định mặt cầu ngoại tiếp hình chóp ta thực hiện theo hai bước: + Bước 1: Xác định tâm của đường tròn ngoại tiếp đa giác đáy. Dựng Δ: trục đường tròn ngoại tiếp đa giác đáy. + Bước 2: Xác định trục d của đường tròn ngoại tiếp một mặt bên (dễ xác định) của khối chóp. Lúc đó: + Tâm I của mặt cầu: Δ ∩ d = I. + Bán kính: R = IA (= IS). Tuỳ vào từng trường hợp. II – BÀI TẬP TRẮC NGHIỆM MINH HỌA III -BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN
Một số công thức tính bán kính mặt cầu - Trần Lê Quyền
Tài liệu gồm 8 trang với phần giới thiệu công thức tính, ví dụ mẫu có lời giải và các bài tập trắc nghiệm tính bán kính mặt cầu. Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = 2a. Cạnh bên SA vuông góc với mặt đáy và SA = a√3. Tính bán kính của mặt cầu ngoại tiếp hình chóp S.ABC. + Cho tứ diện OABC có A, B, C thay đổi nhưng luôn thỏa mãn OA, OB, OC đôi một vuông góc và 2OA+OB +OC = 3. Giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp OABC là? + Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC = 1; các điểm AB, thay đổi trên OxOy, sao cho OA + OB = OC. Tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. [ads] + Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a/√3. Gọi D là điểm đối xứng của A qua BC. Tính bán kính của mặt cầu ngoại tiếp hình chóp S.BCD. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với (SAC) một góc 30◦. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABC.
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư
Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy