Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Võ Nguyên Giáp Quảng Bình

Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Võ Nguyên Giáp Quảng Bình Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Võ Nguyên Giáp Quảng Bình Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Võ Nguyên Giáp Quảng Bình Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 của trường chuyên Võ Nguyên Giáp ở Quảng Bình là một bài thi khó, được thiết kế để đánh giá năng lực và kiến thức của học sinh. Đề bài gồm có 5 bài toán dạng tự luận, thách thức học sinh phải tự suy nghĩ và giải quyết vấn đề. Thời gian làm bài thi là 150 phút, đủ để học sinh có đủ thời gian để suy nghĩ và giải quyết các bài toán phức tạp. Kỳ thi được tổ chức vào ngày 16 tháng 07 năm 2020. Trong đề thi, có những bài toán đòi hỏi sự logic, khéo léo và kiến thức sâu rộng từ học sinh. Ví dụ như bài toán về phương trình có tham số, hoặc bài toán về tam giác đều cố định và đường thẳng di chuyển. Bài toán không chỉ là để học sinh tính toán mà còn để học sinh phát triển khả năng suy luận, logic và cách giải quyết vấn đề. Đây là cơ hội để học sinh thể hiện sự sáng tạo và trí tuệ của mình trong việc giải quyết các vấn đề toán học khó khăn.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT TP. HCM
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT TP. HCM Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT TP. HCM Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT TP. HCM Đề thi tuyển sinh lớp 10 THPT năm 2017 môn Toán sở GD và ĐT thành phố Hồ Chí Minh được đặt ra với 5 câu hỏi tự luận, cung cấp lời giải chi tiết cho từng câu hỏi. Trong đó, có các bài toán như sau: Một miếng đất hình chữ nhật có chu vi 100 m. Hãy tính chiều dài và chiều rộng của miếng đất biết rằng chiều rộng lớn hơn 2 lần chiều dài 40 m. Vào lúc 6 giờ sáng, bạn An đi xe đạp từ nhà đến trường phải vượt qua một con dốc. Đoạn đường từ nhà đến trường dài 762 m, góc nghiêng tại nhà là 6 độ và góc tại trường là 4 độ. Tính chiều cao của con dốc và thời gian An đến trường. Đề thi này đánh giá khả năng giải toán logic, xử lý thông tin và áp dụng kiến thức Toán trong đời sống thực tế của thí sinh. Qua đó, giúp học sinh phát triển tư duy logic, khả năng giải quyết vấn đề một cách chính xác và linh hoạt.
Đề thi tuyển sinh THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa Vũng Tàu
Nội dung Đề thi tuyển sinh THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu bao gồm 5 câu hỏi tự luận, với lời giải chi tiết dưới đây. Đề thi có một số bài toán như sau: Bài toán 1: Cho parabol (P): y = –x^2 và đường thẳng (d): y = 4x – m. Hãy vẽ parabol (P) và tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung. Bài toán 2: Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. Hãy chứng minh tứ giác CFDH nội tiếp, CF.CA = CH.CB, tia OI là tia phân giác của góc COD và điểm I thuộc một đường tròn cố định khi CD thay đổi. Bằng cách giải các bài toán trên, học sinh sẽ được thực hành và áp dụng kiến thức Toán một cách sâu hơn, phát triển kỹ năng logic và tư duy.
Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS Lương Thế Vinh TP. HCM
Nội dung Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS Lương Thế Vinh TP. HCM Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS Lương Thế Vinh TP. HCM Đề thi thử tuyển sinh vào năm 2017 môn Toán trường THCS Lương Thế Vinh TP. HCM Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM bao gồm 6 bài tập tự luận với lời giải chi tiết. Trong số đó, có một số bài tập như sau: - Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. a) Chứng minh: \(MB^2 = MC.MD\) b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: \(AD^2 = AJ.MD\) d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R - Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra. Đề thi trên đưa ra nhiều bài toán phức tạp và đòi hỏi sự logic, suy luận cao. Việc giải quyết các bài toán này không chỉ giúp học sinh rèn luyện kỹ năng tính toán mà còn phát triển tư duy logic, khả năng giải quyết vấn đề.
Tuyển chọn các đề thi tuyển sinh vào môn Toán Nguyễn Hoàng Nam
Nội dung Tuyển chọn các đề thi tuyển sinh vào môn Toán Nguyễn Hoàng Nam Bản PDF - Nội dung bài viết Tuyển chọn đề thi Toán Nguyễn Hoàng Nam 2013 - 2014 Tuyển chọn đề thi Toán Nguyễn Hoàng Nam 2013 - 2014 Đề thi Toán Nguyễn Hoàng Nam là bộ sưu tập các câu hỏi chất lượng được lựa chọn từ các tỉnh thành trên cả nước trong năm học 2013 - 2014. Bên cạnh đó, sản phẩm còn bổ sung một số câu hỏi trọng tâm thường xuất hiện trong kỳ thi tuyển sinh vào môn Toán. Đặc biệt, các bài toán hình học khó đã được trình bày đầy đủ hình vẽ kèm theo, ký hiệu và sơ đồ chi tiết giúp học sinh dễ dàng hiểu và áp dụng vào việc giải quyết. Tuyển chọn đề thi Toán Nguyễn Hoàng Nam không chỉ giúp học sinh ôn tập hiệu quả mà còn thúc đẩy khả năng tư duy logic và sáng tạo trong việc giải quyết các bài toán phức tạp.