Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề mũ - logarit và tích phân

Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.

Nguồn: toanmath.com

Đọc Sách

Kỹ năng sử dụng Casio giải nhanh trắc nghiệm hàm số và mũ - logarit - Lê Anh Tuấn
Tài liệu gồm 72 trang với 15 bài: + Bài 1. Tìm giá trị lớn nhất – giá trị nhỏ nhất + Bài 2. Tìm nhanh khoảng đồng biến – nghịch biến + Bài 3. Cực trị hàm số + Bài 4. Tiếp tuyến của hàm số + Bài 5. Giới hạn của hàm số + Bài 6. Tiệm cận của đồ thị hàm số + Bài 7. Bài toán tương giao giữa hai đồ thị [ads] + Bài 8. Đạo hàm + Bài 9. Tìm số nghiệm phương trình mũ – logarit (phần 1) + Bài 10. Tìm số nghiêm phương trình mũ – logarit (phần 2) + Bài 11. Tìm số nghiệm phương trình mũ – logarit (phần 3) + Bài 12. Giải nhanh bất phương trình mũ – logarit (phần 1) + Bài 13. Giải nhanh bất phương trình mũ – logarit (phần 2) + Bài 14. Tìm số chữ số của một lũy thừa + Bài 15. Tính nhanh giá trị biểu thức mũ – logarit
Phương pháp giải bài toán lãi suất ngân hàng - Mẫn Ngọc Quang
Tài liệu gồm 18 trang hướng dẫn phương pháp giải bài toán lãi suất ngân hàng và các bài tập trắc nghiệm có lời giải chi tiết. Công thức 1: (Dành cho gửi tiền một lần) Gửi vào ngân hàng số tiền là a đồng, với lãi suất hàng tháng là r% trong n tháng. Tính cả vốn lẫn lãi T sau n tháng ? Công thức 2: (Dành cho gửi tiền hàng tháng) Một người, hàng tháng gửi vào ngân hàng số tiền là a (đồng). Biết lãi suất hàng tháng là r%. Hỏi sau n tháng, người ấy có bao nhiêu tiền ? Công thức 3: Dành cho bài toán trả góp: Gọi số tiền vay là N, lãi suất là x, n là số tháng phải trả, A là số tiền phải trả vào hàng tháng để sau n tháng là hết nợ. Công thức 4: Rút sổ tiết kiệm theo định kỳ: Thực ra bài toán này giống bài 3, nhưng mình lại hiểu là ngân hàng nợ tiền của người cho vay. Trái lại so với vay trả góp. Công thức 5: Gửi tiền theo kỳ hạn 3 tháng, 6 tháng, 1 năm … [ads]
Một số bài toán cơ bản về tính lãi suất ngân hàng - Hoàng Tiến Trung
Tài liệu gồm 8 trang trình bày công thức giải các bài toán lãi suất ngân hàng kèm theo các ví dụ mẫu có lời giải chi tiết. + Lãi đơn: Lãi được tính theo tỉ lệ phần trăm trong một khoảng thời gian cố định trước. Ví dụ : Khi ta gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9% /năm thì sau một năm ta nhận được số tiền lãi là: 50 * 6,9% = 3,45 (triệu đồng) – Số tiền lãi này như nhau được cộng vào hàng năm. Kiểu tính lãi này được gọi là lãi đơn. – Sau hai năm số tiền cả gốc lẫn lãi là: 50 + 2 * 3,45 = 56,9 (triệu đồng) – Sau n năm số tiền cả gốc lẫn lãi là: 50 + n * 3,45 (triệu đồng) [ads] + Lãi kép: Sau một đơn vị thời gian (kỳ hạn), tiền lãi được gộp vào vốn và được tính lãi. Loại lãi này được gọi là lãi kép. Ví dụ: Khi gửi tiết kiệm 50 (triệu đồng) vào một ngân hàng với lãi suất 6,9%/năm thì sau một năm, ta nhận được số tiền cả gốc lẫn lãi là : 50 + 3,45 =  53,45 (triệu đồng) – Toàn bộ số tiền này được gọi là gốc. – Tổng số tiền cuối năm thứ hai là: 53,45 + 53,45 * 6,9% = 53,45 * (1 + 6,9%) (triệu đồng)
Phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit - Nguyễn Đình Hoàn
Tài liệu gồm 25 trang giới thiệu phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit do tác giả Nguyễn Đình Hoàn biên soạn. Tài liệu gồm 5 ví dụ và 12 bài toán áp dụng có lời giải chi tiết. Cách 1: Nâng lũy thừa không hoàn toàn Cách 2: Nâng lũy thừa hoàn toàn Cách 3: Nâng lũy thừa hoàn toàn kết hợp với ẩn phụ Các ví dụ mẫu được giải chi tiết kèm theo phần bình luận, rút kinh nghiệm sau mỗi bài toán giúp bạn đọc hiểu rõ và biết cách vận dụng hợp lý vào các bài toán khác. [ads]