Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Bình Phước

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Bình Phước : + Một công ty vận tải dự định chở 54 tấn hàng để hưởng ứng phong trào “Hướng về Miền Trung thân yêu”. Nhưng khi chuẩn bị khởi hành thì số hàng hóa đã tăng thêm 6 tấn so với dự định. Vì vậy công ty phải bổ sung thêm 3 xe, lúc này mỗi xe chở ít hơn dự định 1 tấn hàng. Hỏi ban đầu công ty dự định dùng bao nhiêu chiếc xe để chở hàng, biết các xe chở số tấn hàng bằng nhau. + Cho đường tròn tâm O đường kính AB. Trên cùng nữa mặt phẳng bờ AB, vẽ các tiếp tuyến Ax By của (O) và lấy điểm C sao cho CA CB. Trên đoạn OA lấy điểm D (D khác O A). Đường thẳng vuông góc với CD tại C cắt Ax By lần lượt tại E F. Đoạn thẳng AC cắt DE tại G, BC cắt DF tại H, OC cắt GH tại I. Gọi J K lần lượt là trung điểm của DE DF. a) Chứng minh ∆AGE đồng dạng ∆FHC. b) Chứng minh I là trung điểm của GH và IJK thẳng hàng. c) Gọi M là giao điểm của JO và DK. Chứng minh ∆JOK vuông và DE IM KO đồng quy. + Cho nữa đường tròn (O;R) đường kính AB. M là điểm di động trên nữa đường tròn (M không trùng với A B). Qua M kẻ tiếp tuyến với nữa đường tròn. Gọi D C lần lượt là hình chiếu của A B trên tiếp tuyến ấy. Tìm vị trí của M để tứ giác ABCD có diện tích lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Đề thi bao gồm các bài toán thú vị và thách thức để kiểm tra kiến thức và kỹ năng của các em. Dưới đây là một số câu hỏi trong đề thi: 1. Cho Parabol (P): y = x2 và đường thẳng d: y = 2x - m. Hãy tìm giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt với hoành độ x1, x2 thỏa mãn x12 + x22 = 5. 2. Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Hãy chứng minh rằng? 3. Trong tam giác ABC vuông tại A, với AB < AC và M là trung điểm của cạnh BC. Gọi P là một điểm bất kì trên đoạn AM. K, L lần lượt là các điểm nằm trên tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E. Hãy chứng minh rằng: a) Tam giác BKA và BAP đồng dạng. b) Đường tròn IJ song song với đường FE. Hy vọng đề thi này sẽ giúp các em học sinh ôn tập và nâng cao kiến thức Toán của mình. Chúc quý thầy cô giáo và các em học sinh một kỳ thi thành công!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh 2022-2023 Bình Định Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh 2022-2023 Bình Định Sytu xin gửi đến quý thầy, cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 03 năm 2023. Đề bao gồm các bài toán sau: Trong tam giác nhọn ABC nội tiếp đường tròn (O) và một điểm P bất kì nằm trong tam giác, chứng minh HO là phân giác của góc IHD và KD vuông góc DM. Cho tam giác ABC có các đường phân giác trong AD, BE, CF cắt nhau tại I. Hãy chứng minh một số tính chất của tam giác. Có bao nhiêu tam giác có đỉnh là đỉnh của đa giác đều 2n đỉnh và có một góc lớn hơn 100 độ? Đây là những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các em học sinh. Chúc các em thi tốt!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 – 2023 sở GD ĐT Bắc Giang
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 – 2023 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Giang Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi Toán cấp tỉnh của năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức. Đề thi gồm hai phần chính: trắc nghiệm (chiếm 30% tổng điểm) và tự luận (chiếm 70% tổng điểm). Thí sinh có 120 phút để hoàn thành bài thi, không tính thời gian giao đề. Kỳ thi sẽ diễn ra vào ngày 04 tháng 03 năm 2023. Trích dẫn một số câu hỏi trong đề: 1. Cho đường tròn tâm O bán kính R có dây cung AB = 6. Biết góc AOB = 120°. Tính diện tích phần hình tròn giới hạn bởi cung nhỏ AB và dây cung AB. 2. Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. Đường thẳng d qua A cắt hai đường tròn tại M, N và A thuộc đoạn MN. Chứng minh tứ giác MBNK là tứ giác nội tiếp. 3. Trong mặt phẳng tọa độ Oxy, gọi M(x, y) là hình chiếu vuông góc của điểm O lên đường thẳng d: y = mx + 2. Khi độ dài đoạn thẳng OM đạt giá trị lớn nhất, tính P = x^2y.
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Phước
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 9 cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi môn Toán lớp 9 cấp tỉnh năm 2022 - 2023 Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 18 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi thú vị và phong phú, như sau: 1. Cho đường thẳng (d): mx + (m − 1)y – 2m + 1 = 0 (với m là tham số). Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m. 2. Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A di động trên đường tròn (O;R) sao cho tam giác ABC nhọn. Kẻ đường cao AD và trực tâm H của tam giác ABC. a) Chứng minh tam giác AMN cân khi đường thẳng chứa phân giác ngoài của góc BHC cắt AB, AC lần lượt tại các điểm M, N. b) Chứng minh 4 điểm P, E, F, Q thẳng hàng và OA vuông góc PQ khi các điểm E, F lần lượt là hình chiếu của D trên các đường thẳng BH, CH và các điểm P, Q lần lượt là hình chiếu của D trên các cạnh AB, AC. c) Chứng minh đường thẳng HK luôn đi qua một điểm cố định khi đường tròn ngoại tiếp tam giác AMN cắt đường phân giác trong của góc BAC tại K. 3. Xác định vị trí của điểm H để diện tích tam giác AMN đạt giá trị lớn nhất trong trường hợp tam giác cân tại A với điểm O là trung điểm của BC và điểm H chạy trên cung nhỏ EF của đường tròn tiếp xúc với các cạnh AB, AC tại E, F. Hãy cùng tham gia và thách thức bản thân với đề thi học sinh giỏi môn Toán lớp 9 cấp tỉnh năm 2022 - 2023 để trải nghiệm những câu hỏi hấp dẫn và phấn đấu cho thành công học tập!